
Learning, Using Examples, to Translate Phrases and Sentences to Meanings

by

Adam Davis Kraft

Submitted to the Department of Electrical Engineering and Computer Science

In Partial Ful llment of the Requirements for the Degree offi

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

October 2007

Copyright 2007 Adam D. Kraft. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and

to distribute publicly paper and electronic copies of this thesis document in whole and in

part in any medium now known or hereafter created.

Author: .

Department of Electrical Engineering and Computer Science

October 19, 2007

Certi ed by: . fi

Patrick Henry Winston

Ford Professor of Arti cial Intelligence and Computer Sciencefi

Accepted by: .

Arthur C. Smith

Professor of Electrical Engineering

Chairman, Department Committee for Graduate Theses

2

Learning, Using Examples, to Translate Phrases and Sentences to Meanings

by

Adam Davis Kraft

Submitted to the Department of Electrical Engineering and Computer Science

October 19, 2007

In partial ful llment of the requirements for the degree offi

 Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Before we can create intelligent systems that exhibit the versatility of the human intellect,

we must understand how our command of language enables the uniquely broad scope of

our reasoning ability. To pursue such an understanding, we must discover the ways by

which language gives rise to representations which, in turn, serve as the building blocks of

models that capture constraints and regularities of our environment. The work described in

this thesis constitutes a step toward this goal. I have combined aspects of Winston's Arch-

Learning methodology with implementations of three powerful representations: Lexical

Conceptual Semantics[Jackendoff 1983], Transition Spaces[Borchardt 1993], and Thread

Memory[Vaina, Greenblatt 1979], in a system that learns to instantiate semantic

descriptions from language based on a sequence of examples. My program, Lance, builds

models of the correspondences between parse trees and semantic descriptions by

generalizing from a sequence of pairs of sentence fragments and descriptions.

Additionally, counterexamples of one type of correspondence model may be generated from

examples of similar models in order to facilitate learning by near miss. The result is that

my system can learn such constraints as in order for a sentence to convey a transition, it

must contain a verb that means either “change,” “appear,” or “disappear.” In this work I

developed an approach based on presentation of parse trees paired with instantiated

representations and the Arch-Learning paradigm, and implemented Lance, a 12,000 line

Java program. I demonstrated that from a training sequence of 95 examples, Lance learned

27 models of THINGS PARTS, PLACES, PATHELEMENTS, TRAJECTORY-SPACES,

TRANSITION-SPACES, CAUSES, and IS-A relations.

3

4

Acknowledgments

I am indebted to Patrick Winston for providing the inspiration and support for this work, and

for giving me the freedom to pursue it in my own direction. Patrick Winston inspired my passion

to understand human intelligence, and taught me everything that I know about effective

communication.

I owe special thanks to my academic advisor, Paul Gray, whose wisdom and guidance have

been invaluable to me during my years at MIT.

I thank Mark Finlayson, Sam Glidden, Mark Seifter and the many participants in the Genesis

Project research group for helping me with this thesis and for sharing their knowledgeable

enthusiasm for Arti cial Intelligence.fi

Finally, I thank my parents for investing so much of their time and energy in my education, and

for instilling in me their belief that education is the most important investment that one can make.

 This research was supported in part by the National Science Foundation, Award Number

IIS-0646933.

5

Contents

1. Introduction..8

1.1 Modeling Transformations between Language and Representation......................................10

1.2 Representations, Models, and Concepts...12

1.3 The Gauntlet System..13

1.4 Overview..15

2. Motivation By Example..17

2.1 Three Representational Frameworks...18

2.2 Meta-Representation and Notation...19

2.3 Setting the Stage...21

2.3.1 THINGS, PLACES, PARTS, and PATHELEMENTS...21

2.3.2 TRAJECTORY- and TRANSITION-SPACES...29

2.3.3 CAUSE...32

2.3.4 States and Thread Memories..33

2.4 Extracting Regularity and Constraints from Examples..36

2.5 Refining the Language-Representation Model...40

3. Implementation...48

3.1 Overview..49

3.2 Preprocessing Stage..51

3.3 Model Building..53

3.4 Approximating High-Order Constraints...62

4.5 Priming Mechanisms..63

3.6 Example Training Exercise..64

4. Background...74

4.1 Parsing Theory and Technology...74

4.1.1 Statistical vs. Principle-Based Parsing..75

4.2 Semantic Representations...76

4.2.1 Lexical Conceptual Structures...77

4.2.2 Transition Space..79

6

4.2.3 Thread Memory...81

5. Discussion..84

6. Contributions..88

References..90

7

1. Introduction

Before we can create intelligent systems that exhibit the versatility of the human intellect,

we must understand how our command of language enables the uniquely broad scope of our

reasoning ability. Pursuit of such an understanding is guided by two fundamental questions:

� How does language empower us to construct models that exhibit the constraints and

regularity inherent in our environment?

� How does language orchestrate symbolic and sub-symbolic reasoning abilities to enable

multi-modal reasoning?

My particular goal is to shed light on the question of how language gives rise to models. The rstfi

step toward this goal is to relate the structure of language to its meaning. Speci cally, I seek waysfi

to connect sentences and phrases of natural language to world-modeling representations. To this

end I have implemented Lance, a program that learns how to construct descriptions, cast in

Borchardt's Transition Spaces [Borchardt 1993], Jackendoff's Lexical Conceptual Semantics (LCS)

[Jackendoff 1983], and other powerful representations, from English text. Lance is a key

component of the Gauntlet System, an ongoing enterprise that addresses both the modeling

question and the sub-symbolic question. The Gauntlet System aims to discover the roles of

language and vision in concept formation. Such an endeavor requires that we understand language

not only in its ability to evoke symbolic representations, but in its capacity to marshal sub-symbolic

agents in order to coordinate language and vision.

One way to relate the structure and meaning of language is to use the phrase structure and

lexical information of sentences to extract unambiguous semantic descriptions from those

sentences. LCS and Transition Space exemplify the type of representational framework that can

convey such semantic descriptions concisely and with wide coverage. Figure 1-1 depicts two

prepositional phrases and their semantic descriptions in LCS.

on the table � [Place ON �[Thing TABLE]�]
to the table � [Path TO � [Place AT �[Thing TABLE] �]�]

Figure 1-1: Semantic Descriptions of Prepositional Phrases

8

In order to extract the semantic descriptions shown in Figure 1-1 from their corresponding

sentence fragments, we can devise rules that map from the language domain onto the semantic

domain. Such rules can stipulate, for example, that if a phrase is a prepositional phrase, and the

preposition is the word on, and the object described by the noun phrase is a physical thing, then the

semantic description of the prepositional phrase is a place. If, however, the object described by the

noun phrase is a physical thing but the preposition is to, then the description is a path. That such

rules seem obvious is a testament to the agility with which the human mind can acquire them from

context. Codifying such rules manually, however, can be a tedious and error-prone process because

of subtle interactions between language structures and semantic forms. Lance acquires the rules

that generate semantic descriptions corresponding to language structures automatically, by learning

from a sequence of language-description pairs such as those of Figure 1-1. Once learned, the rules

can generate semantic descriptions of novel sentences and fragments in the context of the Gauntlet

System.

My work on Lance differs from previous work in natural-language parsing because it is

focused on extracting the meaning—not just the structure—of language. Lance differs from

previous work in its own domain of semantic interpretation because it relies on a training process

based on Winston's Arch-Learning methodology [Winston 1970]. It is this learning methodology

that enables Lance to learn the rules for constructing semantic descriptions corresponding to

language structures. With Arch Learning it becomes possible for Lance to learn models that

specify how parse trees map onto descriptions. An example of such a model is shown in Figure 1-

2. A detailed explanation of the type of model shown in Figure 1-2 is given in Section 3. Lance's

ability to learn the rules that map parse trees to descriptions gives it an advantage over efforts to

manually catalog the rules, whose number and formidable complexity imposes severe limitations

on the utility of a manual approach. In this thesis I present the design and implementation of

Lance, motivated by examples and by the requirements imposed upon it by its role in the Gauntlet

System.

9

Figure 1-2: Model of a parse tree mapping to a TRAJECTORY-SPACE

1.1 Modeling Transformations between Language and Representation

Prior art in the domain of semantic extraction relied on carefully designed patterns to match

against highly constrained language in order to determine what type of semantic frame best suited a

phrase, and which variables within that frame correspond to which lexical items in the phrase.

Such hand-made patterns characterize the BridgeSpeak parser [Miller, C. 2006, Larson 2003]

which was equipped to extract trajectory, transition, and classi cation frames from sentences. fi

In practice, even simple semantic structures have some unusual manifestations and special-

case exceptions in language, as exempli ed by the discussion in Section 2 of how direction wordsfi

influence whether PATHELEMENTS may be used to indicate PLACES. Designing elaborate

rules to account for such special cases is a tedious enterprise, which becomes increasingly prone to

error as the number of different representations supported by a system grows. Because the

Gauntlet System may eventually support a dozen or so representations [Winston 2007], it is critical

10

trajectorySpace

76534, thing trajectorySpace

trajectoryLadder

76535, thing trajectoryLadder

THIS_THREAD_IS_A_PLACEHOLDER

76541

MUST_BE_A

76536, thing entity physical−entity object whole MUST_BE_A

path

76537, thing path

MUST_BE_A

76540, thing pathElement MUST_BE_A

at

76539, thing place at

tree

76538, thing entity physical−entity object whole living−thing organism plant vascular−plant woody−plant tree

NP

Thing ID=76536

MUST_BE_A
whole
object
physical−entity
entity
thing

VP

VBG

MUST_BE_A
VERB
word

MUST_BE_A
travel
action

Der. ID=76540

MUST_BE_A
pathElement
thing

to alleviate the burden of designing rules by hand.

An important observation about designing rules by hand is that the process depends on

thinking about speci c example cases that the system designers know to embody certain semantics.fi

The thought process is roughly one of identifying an example that implements a semantic category,

and then generalizing it to form a template that matches similar examples. The rst critical step—fi

identifying an example and its semantics—seems to come quite naturally. It is the generalizing

step that is time-consuming and prone to human error. In this work, therefore, I automate the

process of generalizing from examples to templates.

Intuitively, we know that the prepositions in Figure 1-1 convey the critical information that

distinguishes the semantic description of a place from that of a path, and that the type described by

the noun phrase is not important, provided that it is a physical object. Because the only difference

between “to the table” and “on the table” is the preposition, however, it is a simple matter to

convey the intuition about prepositions systematically. In terms of the Arch-Learning

paradigm[Winston 1970], “on the table” constitutes a near miss with respect to an evolving model

of path prepositional phrases and their associated semantic descriptions. Likewise, “to the table”

constitutes a near miss with respect to the place-phrase model. In order to convey the other part of

our intuition, that the noun phrase may represent any physical object, we may present further

examples of places and paths such as those of Figure 1-3. The objects represented by the noun

phrases in Figure 1-3 are sufficiently different from a table that the system may generalize its

models of place and path phrases to reflect the intuition that any physical object is acceptable.

on the tree � [Place ON �[Thing TREE] �]
to the ant � [Path TO � [Place AT �[Thing ANT]�]�]

Figure 1-3: Semantic Descriptions of Prepositional Phrases, Permitting Generalization

It is in precisely this way that Lance learns how to build semantic descriptions from

language. A single phrase-description pair serves as an initial model. Examples of different

semantic categories that meet criteria of structural similarity and that qualify as near misses permit

specialization of the model. Examples that relax constraints on a part of the semantics of the

11

model permit generalization.

1.2 Representations, Models, and Concepts

The words representation, model, and concept have speci c meanings in the context of thefi

Gauntlet System. A standard de nition of these three words is essential to further discussion of thefi

Gauntlet System and my component, Lance, because everyday usage permits us to bend these

terms in convenient but potentially misleading ways.

As noted by Patrick Winston[Winston 2007,1], the principle of concept formation is

familiar to us in many contexts: from infancy we learn what it means to be happy, tired, or hungry.

As we mature we gain knowledge of activities like children's games, and of abstract categories such

as vegetable and animal. We then begin to recognize impalpable things such as love, honor, and

mystery. As we pass into adulthood we master abstraction, enabling us to understand formalisms

such as calculus. With such a repertoire of meanings, it is not surprising that concept has acquired

status among the most notorious of the so-called suitcase words, whose tidy outward appearance

belies the jumble we are able to cram within.

The de nition of fi concept in the context of the Gauntlet System is aimed at bringing

important technical questions to light: a concept is a complex, cross-modal model that

crystallizes out of experience [Winston 2007, 1]. Here, the terms complex and cross-modal apply

speci cally to the way in which concepts unite disparate ways of perceiving or understanding afi

phenomenon, for example, through a combination of a verbal description and a visual scene. A

concept is complex in that to have a concept means to retain the ability to interpret the

phenomenon to which it pertains in more than one way. A concept also balances this variety in

interpretation with uniformity, by allowing connections between different interpretations to expose

new constraints and regularities. Such cross-modal constraints and regularities would not have

emerged from any lone interpretation. That concepts crystallize out of experience means that

concept formation is a process of iterative re nement based on observations, rather than a one-shotfi

learning exercise or hard-wired knowledge.

The notion of a concept is rooted in the notion of a model. Science and engineering models

12

express important regularities and constraints of a domain. A model of objects that participate in

trajectories, for example, might capture the regularity that birds can fly, whereas elephants cannot.

Models, in turn, rely on aptly-chosen representations. In order to model a particular regularity or

constraint observed in the environment, it is necessary to employ a representational framework

capable of capturing the observation. Choosing or devising such a framework is a creative

endeavor that is the essence of science and engineering.

Although they are a necessary component of models, expressive representations are

insufficient as models in and of themselves. Experience is the key to forming models from

representations: although the representational framework chosen for trajectories may be capable of

expressing the event in which an elephant flew up a flagpole, the absence of elephants from

observed aerial trajectories may prove itself an important constraint to include in the trajectory

model. In this way, representations are like elastic wrappers that conform to real-world

phenomena, evolving models that accentuate the important aspects of those phenomena.

1.3 The Gauntlet System

If we are to understand human intelligence, we must understand our linguistic ability, which

clearly differentiates human reasoning from the competencies of our closest primate cousins. It is

this facility to use words, phrases, and sentences that allows us all to bene t from a wealth offi

recorded human experience, to form insightful analogies, and to bring many observations from

disparate sensory modes to bear on concept formation.

Because it is clearly our rich use of symbols that sets us apart from other primates, our

language abilities might appear to operate in a strictly symbolic domain. Any attempt to account

for language abilities based on this appearance, however, would nd itself mired in a host offi

difficulties, arising from the inherent ambiguity of many words and phrases. Behind language's

symbolic facade, it synchronizes closely with sub-symbolic faculties in imagination-stimulating

loops [Winston 2007, 2]. A successful approach to understanding language's contribution to

intelligence must therefore focus on the exchanges that occur between the symbolic reasoning

13

modes of language, and the sub-symbolic perceptual and motor apparatus upon which it relies.

The MIT CSAIL Genesis Group has undertaken the challenge to discover how language

and vision cooperate to form concepts through the Gauntlet System[Winston 2007, 1]. The work

described in this thesis is an integral part of this research. The Gauntlet System is organized

conceptually as a bank of experts, each listening either to a stream of language or to a stream of

visual input. Each expert selectively analyzes items appearing in its stream that pertain to its

domain of expertise, and ignores the items that it does not recognize. Examples of domains in

which particular experts operate are Jackendoff's trajectories, Borchardt's Transition Spaces, and

Vaina's and Greenblatt's Thread Memories, which are discussed in Section 4. The experts' analyses

may result in state changes in memories belonging to each expert. Each memory, in turn, is

accessible to a global cross-representation memory, in which the linkages of nascent concepts will

form.

My contribution to the Gauntlet System, Lance, is the rst stage of recognition used byfi

each language expert. Lance occupies the boundary between the language stream and each

language expert's higher-level processing center, as depicted in Figure 1-4. As sentences and

fragments enter the system in the form of text, Lance attempts to instantiate semantic structures

corresponding to those sentences and fragments. If the attempt is successful, Lance presents the

resulting semantic structures to the expert-speci c processing machinery.fi

14

Figure 1-4: Gauntlet System Organization

1.4 Overview

This thesis is organized in six sections.

Section 2 is devoted mainly to examples that played a crucial role in motivating the design

of Lance, and provided the most direct way to delineate the problem domain in this thesis.

Speci cally, these examples provide a means to address the following questions:fi

� How do representational frameworks manifest as sentences and sentence fragments?

� What methods have been used to extract representations from sentences, and what are their

limitations?

� Given a proposed method for extracting representations, what types of misbehavior might

we expect, and what modi cations would correct the problems?fi

In Section 3 I explicitly catalog the design parameters and implementation details

15

Expert

Memory

Vision Stream

Language Stream

Transition
Expert

Memory

Lance

Trajectory
Expert

Memory
 Class
 Expert

Memory
...

Expert

Memory

Expert

Memory

...

Cross-Representation Memory

Cross-Representation Memory

illustrated by example in Section 2, and present the design of Lance.

Section 4 is an overview of the state of the language art as far as it influences this work. I

present a brief selective survey of the science of natural-language parsing, along with a description

of the parsing technology that Lance uses. I also describe several of the representational

frameworks developed by pioneers in the realm of semantics.

In Section 5 I motivate future inquiry by discussing aspects of the implementation that

point toward new challenges.

Section 6 underscores my contributions in this thesis.

16

2. Motivation By Example

This section presents examples of the types of problems that Lance solves in order to

motivate a discussion of the design parameters that address those problems. I have taken this

approach for two reasons:

� I used example cases routinely to focus my design effort. This strategy helped me

parameterize a formidable challenge—that of extracting descriptions cast in a yet-

unspeci ed ontology, comprised of many disparate representational frameworks, fromfi

inherently ambiguous language—into manageable subgoals. Taken out of context, these

subgoals might seem arbitrary, but within the context of the example cases the motivation

behind the design choices is clear.

� Examples often constitute the most efficient way to evaluate a design choice. Given a

nebulous problem domain, it is often either prohibitively difficult or deceivingly easy to

justify or to criticize a design decision. Attempts to analyze a problem in depth before it

has been observed in the form of a concrete example can leave a design effort stymied. To

ward off such “analysis paralysis,” I have chosen to motivate my design decisions with

concrete examples.

Problems may befall a design methodology tailored to speci c example cases. The obvious pitfallfi

is the scenario in which the examples fail to capture nuances of the problem domain, so that the

design is doomed to produce little more than a toy system in implementation. Another problem

with example-driven design, articulated by David Marr in “Arti cial Intelligencefi —A Personal

View”[Marr 1976], is that this methodology may preclude discovery of any concise or elegant

model to account for the observed phenomena. Marr called those contributions to AI that were

rooted in implementation, rather than elegant theories, Type-Two contributions, and warned of the

ideological sacri ce inherent in resorting to Type-Two without rst searching for elegant fi fi Type-One

alternatives.

Although Lance falls squarely in the Type-Two class, I believe that this compromise is

warranted. Because Lance serves to bootstrap development of the Gauntlet System, an expedient

17

solution to the representation-extraction problem will enable progress in concept modeling,

perhaps leading to a Type-One discovery. Furthermore, as I illustrate in this section, a Type-Two

approach can expose new ways to combine existing work, as exempli ed by my use of Winston'sfi

Arch-Learning methodology to develop models of the correspondences between language and

representation. To address the concern that examples will certainly fall short of capturing some

nuances of the language-representation problem, I demonstrate an iterative re nement process infi

this section, to suggest that designing to t example scenarios is a practical and powerful technique,fi

whose use is justi ed until we are overwhelmed by elegant theories of language and representation.fi

2.1 Three Representational Frameworks

The ontology that the Gauntlet System will use to describe events, states and relations that

language can express is not yet speci ed. One of the goals of the Gauntlet research endeavor is tofi

discover a small group of representational frameworks that offer the best coverage of the domain

spanned by both language and vision. Leaving this problem completely unspeci ed would befi

unacceptable, however, from the perspective of developing a system to extract descriptions from

language. I have therefore chosen to focus on three frameworks that exemplify the Gauntlet

ontology. The three frameworks are Jackendoff's Lexical Conceptual Semantics (LCS),

Borchardt's Transition Spaces, and Viana's and Greenblatt's Thread Memories.

LCS provides a convenient way to represent spacial and causal relations. The most basic

element of LCS is a THING, which represents a physical or abstract object. Building on this most

basic element are PLACES, PATHELEMENTS1, PATHS, TRAJECTORIES, and EVENTS. The

following exempli es an LCS description:fi

[Event GO � [Thing SQUIRREL], [Path UP [Thing FLAGPOLE]]�]
Transition Space captures variables changing over time. By aligning descriptions expressed

in Transition Space, a program can systematically reconstruct causal relations. A Transition-Space

rendering of the following sequence of events: “The distance did not change. The distance

1 PATHELEMENTS are not part of Jackendoff's LCS, but are added here as a convenient way to represent PATHS

with multiple PATHFUNCTIONs.

18

decreased. The distance vanished.”

Thread Memories capture categorical information flexibly and conveniently. Threads are

acyclic chains of semantic symbols that are linked to keys. A Thread Memory of a particular

mallard duck follows.

mallard � � � � � living animal bird duck mallard

Each of the three exemplary representational frameworks is detailed in Section 4.

2.2 Meta-Representation and Notation

Lance relies on a meta-representation to describe the representational frameworks that, in

turn, describe the meaning of phrases and sentences. The advantages of using such a meta-

representation are threefold: it simpli es code maintenance, it enables structural comparisonfi

between disparate representations, and it provides a convenient way to visualize representational

frameworks. A meta-representation simpli es code maintenance because it obviates hard-wiringfi

the mechanisms speci c to each representation into the program. By the same token, meta-fi

representations allow improvements to apply to all representations without repeated effort on

behalf of each representation. The ability to execute structural comparisons without regard to the

representational mechanics of the particular descriptions involved is essential to Lance's learning

mechanism, as expounded later in this section. Finally, the constituents of the meta-representation

are presented here, rather than in the section devoted to implementation, because they lend

themselves to a concise notation with which to illustrate the examples in this section.

The meta-representation I employed was designed by Patrick Winston [Winston et al.

2003]. It consists of a hierarchy of structure types, in which the overarching type is Thing, which

subsumes the special types Derivative, Relation, and Sequence as depicted in Figure 2-

1. I adhere to the typographical convention in order to distinguish between meta-representational

items from items such as THINGS in the LCS framework.

19

DISTANCE
t

0
t

1
t

2
t

3

�
_

D

Figure 2-1: Meta-Representation Type Hierarchy

Instances of the Thing type have a label and zero or more instances of Thread Memories.

A Derivative, so called because it describes a property derived from a Thing, contains a

Thing in addition to its own label and bundle. Relations contain two Things and capture the

connection between them. Sequences contain a list of Things and capture the connections

among them. Figure 2-2 illustrates how Jackendoff's and Borchardt's frameworks map onto the

meta-representation.

[Event GO � [Thing SQUIRREL], [Path UP [Thing FLAGPOLE]]�] [[[
[T ENTITY�...�PLACENTAL� RODENT� SQUIRREL

[[[[[T ENTITY�...�STICK�STAFF�FLAGPOLE
D PART�TOP
D PLACE� AT
D PATHELEMENT �TOWARD
S PATH
R TRAVEL�RISE�CLIMB�CLIMBED
S TRAJECTORYLADDER

S TRAJECTORYSPACE

[[[[[T ENTITY� ...� MAGNITUDE�SIZE�DISTANCE
D CHANGE�CHANGED
D OPERATION�LOGICAL�OPERATION� NEGATION

[[T ENTITY� ...�MAGNITUDE� SIZE�DISTANCE
D CHANGE�CHANGE�MAGNITUDE� DECREASE� DECREASED

[[T ENTITY� ...�MAGNITUDE� SIZE�DISTANCE
D END�VANISH� DISAPPEAR�DISAPPEARED
S TRANSITIONLADDER

S TRANSITIONSPACE

Figure 2-2: Meta-Representation rendering of LCS and Transition-Space descriptions

20

Thing

Derivative Sequence

Relation

subtype-of subtype-of

subtype-of

DISTANCE
t

0
t

1 t
2

t
3

�
_

D

As illustrated in Figure 2-2, the renderings of Transition Spaces and trajectories in the

meta-representation have both super cial symbolic differences and structural differences from thefi

representations upon which they are based. Symbolic differences, such as the substitution of

TRAVEL for GO in the trajectory description result from using WordNet, an English lexical

database[Fellbaum 1998], to derive threads corresponding to nouns, verbs, and adjectives. Use of

WordNet is discussed further in Section 3. Inclusion of lexical information pertaining to the verb

climb in the trajectory is redundant but does not compromise the simplicity LCS because of the

way this information is captured in a thread. The most notable structural difference is the

introduction of PATH-ELEMENT to the basic LCS. PATH-ELEMENTs represent modular

segments that make up PATHS, clarifying the notion of PATHS with more than one PATH-

FUNCTION[Bonawitz 2003].

2.3 Setting the Stage

Presented here are examples of the most basic language-description pairs that Lance must

recognize. I emphasize several troublesome scenarios in which subtle variations in parse-tree

structure or other features complicate the matter of semantics extraction.

2.3.1 THINGS, PLACES, PARTS, and PATHELEMENTS

 Table 2-3 introduces several ways in which noun phrases give rise to THINGS, the most

basic elements of the representational framework.

Fragment / Parse Tree Semantic Description

 a dog [T ENTITY� ...�CARNIVORE�CANINE�DOG

 the dog [T ENTITY� ...�CARNIVORE�CANINE�DOG

21

NP

a/DT dog/NN

NP

the/DT dog/NN

 a tree [T ENTITY� ...�VASCULAR�PLANT�WOODY�PLANT�TREE

 the green tree [T ENTITY� ...�VASCULAR�PLANT�WOODY�PLANT�TREE
FEATURE�GREEN

 a tall green

 old tree [T ENTITY�...�VASCULAR�PLANT� WOODY�PLANT�TREE
FEATURE�GREEN
FEATURE�TALL
FEATURE�OLD

a green tall old tree

[T ENTITY�...�VASCULAR�PLANT� WOODY�PLANT�TREE
FEATURE�GREEN
FEATURE�TALL
FEATURE�OLD

Table 2-3 Representation of THINGS

As illustrated by the difference between “a tall old green tree” and “a green tall old tree” in

Table 2-3, slight variations in word choice and order can signi cantly alter the parse tree structure.fi

The variation in tree structure is an artifact of the Wall Street Journal corpus [Marcinkiewicz, et al.

1993] used to train the Stanford Parser, and does not lend itself to any concise model. Instead, it

often appears that the complex interactions among productions within the parser's PCFG provide

the only means to account for the observed variation in tree structure. A system that maps these

parse trees onto semantic descriptions, in which any variation must add value to the interpretation,

must either recognize semantic uniformity despite surface variation or provide a means to

transform the parse trees to reduce spurious variation.

Table 2-4 depicts the opposite scenario in which the syntax of “to the left of <Noun

Phrase>” is not ambiguous, in that the parser will always produce a tree like the one shown. The

semantics of this type of phrase is sensitive to context, however, because such a phrase may just as

easily refer to a PATHELEMENT, e.g. “The dog ran to the left of the tree,” as a PLACE, e.g. “To

the left of the desk stood a potted plant.” To distinguish between the PATHELEMENT and

PLACE interpretations of such constructions as “to the left of the table” requires knowledge of the

surrounding context. This has an important implication for semantics extraction: any purely

22

NP

a/DT tree/NN

NP

the/DT green/JJ tree/NN

NP

a/DT green/JJ tall/JJ old/JJ tree/NN

NP

a/DT ADJP

tall/JJ green/NN old/JJ

tree/NN

bottom-up recognition process that assigns semantic descriptions to subordinate parse trees rstfi

must occasionally account for several potential semantic interpretations of those trees, because it

would not yet have the context information required to choose the appropriate interpretation.

23

Fragment / Parse Tree Semantic Description

on the table [[T ENTITY� ...�FURNISHING�FURNITURE�TABLE
D PLACE�ON

under the table [[T ENTITY� ...�FURNISHING�FURNITURE�TABLE
D PLACE�UNDER

above the table [[T ENTITY� ...�FURNISHING�FURNITURE�TABLE
D PLACE�ABOVE

on the left of the table [[T ENTITY� ...�FURNISHING�FURNITURE�TABLE
D PLACE�LEFTOF

to the left of the table

[[[[[T ENTITY� ...�FURNISHING�FURNITURE�TABLE
D PLACE�LEFTOF
D PATHELEMENT� TO

S PATH
D PLACE�ON

Alternative:

[[[T ENTITY�...�FURNISHING�FURNITURE�TABLE
D PLACE�LEFTOF
D PATHELEMENT�TO

Table 2-4: PLACES and Semantically Ambiguous Prepositional Phrases

To shed more light on the type of semantic ambiguity present in “to the left of the table,”

consider examples in which left is replaced with a super cially similar spatially-descriptive word,fi

top:

The bird sat to the left of the tree.

24

PP

on/IN NP

the/DT table/NN

PP

under/IN NP

the/DT table/NN

PP

above/IN NP

the/DT table/NN

PP

on/IN NP

NP

the/DT left/NN

PP

of/IN NP

the/DT table/NN

PP

to/TO NP

NP

the/DT left/NN

PP

of/IN NP

the/DT table/NN

The bird flew to the left of the tree.

The bird flew to the top of the tree.

*The bird sat to the top of the tree.

The difficulty with “The bird sat to the top of the tree” seems to arise from a quality of

words such as top, bottom, and underside, that necessarily identi es a part of an object, whereasfi

words such as left, right, and North, refer to directions relative to a reference object. Direction

words in a PATHELEMENT construction cause the PATHELEMENT to be of a directional nature

regardless of the preposition used. As noted in Section 2, directions are paths in which the

reference object does not fall on the path itself. It stands to reason that directions can also identify

abstract places because every place conforming to the following production, in which x is a

direction, shares a common spatial property relative to the reference object:

[PLACE]� [Place ON �[Path x]�]

Words such as top, bottom, and side, on the other hand, most often refer to concrete parts of

objects. When these words participate in PATHELEMENT constructions, they are not restricted to

directional paths but may refer to bounded paths or routes as well. Bounded paths and routes

appear to be less apt to identify PLACES per se, because the absolute position relative to the

reference object is not optional when using a bounded or route PATHELEMENT to identify a

place. This is borne out by example:

*The bird perched from the top of the tree.

The bird perched three feet from the top of the tree.

Furthermore, by forcing PATHELEMENTS built upon part words to be of the direction type, the

absolute position along the path again appears optional, as the following pair of examples

illustrates:

*The bird perched from the top of a stone.

The bird perched toward the top of a stone.

25

As a nal item of evidence for the unique ability of directional PATHELEMENTS to evokefi

PLACES, consider the example of forcing a direction word into a part role by using the word part

explicitly:

*The lamp was to the left part of the desk.

The lamp was on the left part of the desk.

When the reference to a part becomes explicit, resulting in a bounded path rather than a directional

path, PATHELEMENTS containing the direction words seem to lose the flexibility to refer to

PLACES without further description of the position along the contained path.

To encapsulate the notion of a part in the meta-representation requires little effort because

parts are naturally expressed in terms of derivatives in the meta representation. Rather than

expanding the PATHFUNCTION vocabulary to account for directions, directions have been

implemented in terms of PATHELEMENTS and the abstract places to which they refer, e.g.

LEFTOF and RIGHTOF. Table 2-5 depicts examples of PARTS and PATHELEMENTS.

26

Fragment / Parse Tree Semantic Description

the top of the tree [[T ENTITY� ...�VASCULAR�PLANT�WOODY�PLANT�TREE
D PART�TOP

the left of the tree Unclear Interpretation

[[T ENTITY� ...�VASCULAR�PLANT�WOODY�PLANT�TREE
D PART�LEFT

to the top of the tree

[[[[T ENTITY�...�VASCULAR�PLANT�WOODY�PLANT�TREE
D PART�TOP
D PLACE� AT

D PATHELEMENT� TO

to the left of the tree Counterexample:

[[[[T ENTITY�...�VASCULAR�PLANT�WOODY�PLANT�TREE
D PART�LEFT
D PLACE� AT

D PATHELEMENT� TO

(Refer to Table 2-4 for positive examples)

Table 2-5: PARTS and PATHELEMENTS

The examples of Table 2-5 illustrate an important caveat pertaining to the semantics of part

and direction words. It is unclear whether constructions of the form “the ___ of the <THING>”

should be considered as identifying parts of the referenced THING when the blank is lled by afi

direction word. Of the following two sentences:

27

?

NP

NP

the/DT top/NN

PP

of/IN NP

the/DT tree/NN

NP

NP

the/DT left/NN

PP

of/IN NP

the/DT tree/NN

PP

to/TO NP

NP

the/DT top/NN

PP

of/IN NP

the/DT tree/NN

PP

to/TO NP

NP

the/DT left/NN

PP

of/IN NP

the/DT tree/NN

X

?The left of the room is painted blue.

The left side of the room is painted blue.

I prefer the form in which side or some other word indicating a part is stated explicitly. Given no

additional context, however, I take the form in which no part of the room is mentioned explicitly to

mean that a leftward part of the room is painted blue. Other native speakers of English may be

more or less inclined to agree.

That the counterexample given in Table 2-5 for “to the left of the tree” is unacceptable

follows from the nature of direction vs. part words. As noted, the flexibility of PATHELEMENT-

type constructions formed with direction words like left and right to represent both

PATHELEMENTS and PLACES seems to arise from the way in which direction words cause the

paths to be unbounded. The interpretation of “to the left of the tree” in table 2-5 is a bounded path,

however, so it should be excluded as a possible interpretation.

Table 2-6 illustrates yet another difficulty in extracting PATHELEMENTS: whereas often

items representing a single element of semantic structure correspond to a uni ed syntacticfi

structure, this is not always true. When the fragment “away from the tree” is included in a verb

phrase, it produces two distinct branches of that verb phrase's parse tree: one for the prepositional

phrase “from the tree” and another for the particle away. Further complicating matters is the fact

that the Stanford Parser cannot produce a root parse tree with multiple branches, so that when

“away from the tree” is parsed alone as a fragment, the parse tree necessarily differs from that of a

sentence that includes this fragment. This precludes training a system to recognize this fragment

out of context. The design of Lance addresses both the context-sensitivity problem and the

disjoint-parse-tree problem simultaneously by requiring that “away from” and other constructions

that suffer from these problems be learned as integral parts of semantics with broader scope, such

as Trajectories.

28

Fragment / Parse Tree Semantic Description

from the tree [[[T ENTITY�...�VASCULAR�PLANT�WOODY�PLANT�TREE
D PLACE� AT
D PATHELEMENT� FROM

away from the tree

Two possible parse trees:

 as part of sentence

parsed as fragment

[[[T ENTITY�...�VASCULAR�PLANT�WOODY�PLANT�TREE
D PLACE� AT
D PATHELEMENT� AWAYFROM

Table 2-6: More PATHELEMENT structures

2.3.2 TRAJECTORY- and TRANSITION-SPACES

As noted in Section 2.2, a TRAJECTORY SPACE is roughly equivalent to certain EVENTs

as described by LCS, and a TRANSITION SPACE corresponds to Borchardt's framework of the

same name. The structures have been cast in the meta-representation so that they have clearly

analogous parts, for reasons that do not pertain directly to this implementation but that concern the

expert components of the Gauntlet System. Table 2-7 introduces basic correspondences between

TRAJECTORY SPACEs, TRANSITION SPACEs, and the simplest syntactic structures that convey

these forms.

29

PP

from/IN NP

the/DT tree/NN

ADVP

away/RB PP

from/IN NP

the/DT tree/NN

PP

from/IN NP

the/DT tree/NN

VP

PRT

away/RP

Sentence / Parse Tree Semantic Description

The bird soared

[[[[T ENTITY� ...�CHORDATE�VERTEBRATE�BIRD
[S PATH
R TRAVEL�FLY� SOAR

S TRAJECTORYLADDER
S TRAJECTORYSPACE

The price decreased

[[[[T ENTITY�...�VALUE� MONETARY_VALUE� PRICE
D CHANGE�CHANGE�MAGNITUDE�DECREASE� DECREASED
S TRANSITIONLADDER

S TRANSITIONSPACE

The price soared

[[[[T ENTITY�...�VALUE� MONETARY�VALUE�PRICE
D CHANGE�...� GROW�RISE� SOAR
S TRANSITIONLADDER

S TRANSITIONSPACE

Alternative:

[[[[T ENTITY� ...�VALUE� MONETARY�VALUE� PRICE
[S PATH
R TRAVEL�FLY� SOAR

S TRAJECTORYLADDER
S TRAJECTORYSPACE

Table 2-7: Basic TRAJECTORY- and TRANSITION-SPACE correspondences

As shown in Table 2-7, no single lexical item in these simple sentences completely

determines whether the semantic descriptions are TRAJECTORY- or TRANSITION-SPACES.

“The price soared” can be interpreted as a metaphorical trajectory, in which an imagined proxy for

the abstraction price flies through an imagined stratosphere to symbolize its rising value. “The

price soared” could just as easily represent a transition in which the monetary value grows over a

period of time, because the word soar has an established sense meaning rise as well. Whether or

not Lance should be required to produce all valid interpretations of a sentence is revisited in

Sections 3 and 5, but it would be decidedly inappropriate for it to produce, for example, a trajectory

in response to “the price decreased” or a transition in response to “the bird soared” for the

particular senses of bird, soar, and price in the examples of Figure 2-7.

Figure 2-8 contains examples of TRAJECTORY SPACES with non-empty PATHS.

30

S

NP

The/DT bird/NN

VP

soared/VBD

S

NP

The/DT price/NN

VP

decreased/VBD

S

NP

The/DT price/NN

VP

soared/VBD

The dog ran away from the tree

[[[
[T ENTITY�...�CARNIVORE�CANINE� DOG

[[[[T ENTITY�...�WOODY�PLANT� TREE
D PLACE� AT
D PATHELEMENT � AWAYFROM

S PATH
R TRAVEL�TRAVEL�RAPIDLY� RUN�RAN

S TRAJECTORYLADDER

S TRAJECTORYSPACE

The dog ran away from the tree to the house via a rock

[[[
[T ENTITY� ...�CARNIVORE�CANINE� DOG

[[[[T ENTITY�...�VASCULAR�PLANT� WOODY�PLANT�TREE
D PLACE� AT
D PATHELEMENT� AWAYFROM

[[[T ENTITY�...� HOUSING� DWELLING�HOUSE
D PLACE� AT
D PATHELEMENT�TO

[[[T ENTITY�...�WHOLE� NATURAL�OBJECT� ROCK
D PLACE� AT
D PATHELEMENT�VIA

S PATH

R TRAVEL�TRAVEL�RAPIDLY� RUN� RAN

S TRAJECTORYLADDER

S TRAJECTORYSPACE

Figure 2-8: Three Trajectories with non-empty paths

The Stanford Parser does not perform well when attaching prepositional phrases. Although

31

S

NP

The/DT dog/NN

VP

ran/VBD PRT

away/RP

PP

from/IN NP

the/DT tree/NN

S

NP

The/DT dog/NN

VP

ran/VBD PRT

away/RP

PP

from/IN NP

the/DT tree/NN

PP

to/TO NP

NP

the/DT house/NN

PP

via/IN NP

a/DT rock/NN

X

the parse tree of “The dog ran away from the tree to the house via a rock” in Figure 2-8 is

grammatically consistent, the literal interpretation of the last prepositional phrase subordinate to

the verb phrase is “to the house that is via a rock.” This interpretation makes little or no sense. By

eliminating the intermediate noun phrase and by moving the prepositional phrase “via a rock” to

the level of the enclosing verb phrase, the interpretation of the parse is brought in line with the

semantics shown in Figure 2-8. In general, it is not computationally feasible to try all attachment

permutations when searching for a suitable interpretation. Even if such a brute-force approach

were possible, it is unclear that it would be fruitful, because the problem of prepositional-phrase

attachment may in itself be AI complete. To correctly attach the prepositional phrase in “The man

saw a dog with a telescope” seems contingent on the commonsense knowledge that telescopes may

be used to view objects, and that dogs do not know how to use telescopes. The implementation

cannot address the problem of prepositional-phrase attachment in its entirety, but it can make

headway towards a solution. In the example of Figure 2-8, the attachments chosen by the Stanford

Parser do not lend themselves to any known semantic interpretation, let alone an interpretation that

can be ruled out by common sense. It is reasonable to assume that a parse that lends itself to some

interpretation constitutes a better choice than one which has no interpretation at all. The approach

taken by the implementation, therefore, is to choose a prepositional-phrase attachment scheme that

allows coverage of parse-tree elements by semantic elements. Further development of the process

involved in testing various prepositional-phrase attachment schemes could lead to a more re nedfi

process in which other components of the Gauntlet System may iteratively re ne the attachments.fi

2.3.3 CAUSE

Causal events described in terms of the meta-representation are not required to be of a

uniform representational framework. It is possible, for example, to have a causal description in

which the agent of the causal relation is a THING or TRAJECTORY SPACE and the outcome is a

TRANSITION SPACE, as in “The distance from the boy to the tree decreased because the boy ran

to the tree.”

32

Figure 2-9 illustrates a problem posed by causal sentences. The SBAR constituent, which

indicates that the transition expressed in this sentence is caused by the trajectory, is subsumed by

the verb phrase of the transition. This obscures the syntactic structure of the transition,

complicating the matter of extracting a transition from this part of the sentence by pattern

matching.

The distance from the boy to the tree decreased because the boy ran to the tree

[[[[
[T ENTITY�...� BOY

[[[[T ENTITY �...�TREE
D PLACE� AT
D PATHELEMENT �TO
S PATH
R TRAVEL�TRAVEL�RAPIDLY�RUN� RAN

S TRAJECTORYLADDER
S TRAJECTORYSPACE

[[[[[[[[T ENTITY�...� MALE� MALE�CHILD�BOY
D PLACE�AT
D PATHELEMENT�FROM

[[[T ENTITY�...�VASCULAR�PLANT�WOODY�PLANT�TREE
D PLACE�AT
D PATHELEMENT�TO
S PATH
D ENTITY�...� MAGNITUDE�SIZE�DISTANCE

D CHANGE�CHANGE�MAGNITUDE�DECREASE�DECREASED

S TRANSITIONLADDER

S TRANSITIONSPACE

R CAUSE

Figure 2-9: A Trajectory and a Transition participate in a Causal Relation.

2.3.4 States and Thread Memories

Declarative statements may convey information about location, condition, or other qualities

33

S

NP

NP

The/DT distance/NN

PP

from/IN NP

NP

the/DT boy/NN

PP

to/TO NP

the/DT tree/NN

VP

decreased/VBD SBAR

because/IN S

NP

the/DT boy/NN

VP

ran/VBD PP

to/TO NP

the/DT tree/NN

that are represented by STATES in LCS. Alternatively, such statements can express categorical

information of the type suited to Thread Memories. To recognize statements of the type “when I

say x I mean y” as introducing a way to map new linguistic forms onto known semantic categories

is an ability sought in the Gauntlet System[Winston 2007, 1], and the rst step toward suchfi

flexibility is recognizing statements that expand existing categories of THINGS, e.g. “A bulldog is

a kind of dog.” A-kind-of and is-a statements differ from locative statements such as “the ball is

on the table” or descriptive statements like “the ball is red.” Locative and descriptive statements

should evoke STATEs, rather than Thread Memories. Figure 2-10 identi es the semantics offi

simple declarative statements.

34

A bulldog is a kind of dog 2

[[T BULLDOG
[T ENTITY�...� CARNIVORE�CANINE� DOG
R A�KIND�OF

The ball is on the table

[[T ENTITY� ...� ARTIFACT�PLAYTHING� BALL

[[T ENTITY�...�FURNISHING�FURNITURE�TABLE
D PLACE�ON
R STATE�BE

The ball is red

[[T ENTITY�...� ARTIFACT�PLAYTHING�BALL
[T FEATURE� RED
R STATE �BE

Figure 2-10: Semantics of Declarative Statements

Because Thread Memories comprise an important part of the meta-representation, I have

introduced the A-KIND-OF and IS-A relations as an intermediate step to acquiring new threads.

Mapping sentences such as “a bulldog is a dog” directly onto their Thread-Memory description

would complicate Lance's implementation because it would force the process of associating syntax

with semantics to scrutinize pieces of threads, rather than treating each thread in a template

description as an immutable and self-contained pattern to match against input. Adding the A-

KIND-OF/IS-A relation allows Lance to take full advantage of the descriptive ability of threads in

the meta-representation without added complexity.

2 This example is structured as though bulldog were an unfamiliar word. In reality, WordNet contains a sense of

this word already[Miller, G. 2006].

35

S

NP

A/DT bulldog/NN

VP

is/VBZ NP

NP

a/DT kind/NN

PP

of/IN NP

dog/NN

S

NP

the/DT ball/NN

VP

is/VBZ PP

on/IN NP

the/DT table/NN

S

NP

the/DT ball/NN

VP

is/VBZ ADJP

red/JJ

2.4 Extracting Regularity and Constraints from Examples

Learning from examples how to produce semantic descriptions of sentences and fragments

requires building a model of the correspondences between syntax and semantics. A simplistic

approach to developing such a model involves storing examples of fragment-description pairs used

to train the system, and developing a scoring method that indicates the degree of difference

between new sentence fragments and those previously encountered. The remembered fragment-

description pair with the best score can then be selected as a template upon which to construct the

semantics of a new fragment.

This way of learning by storing speci c examples and then treating nearest neighbors, asfi

decided by some distance metric, as templates, has the appeal of conceptual simplicity.

Additionally, distance metrics are of particular interest in the Gauntlet System because they allow

the expert components to store descriptions in Self-Organizing Maps (SOMs) [Kohonen 2001].

SOMs are outside the scope of this thesis but their prevalence in the Gauntlet System motivated

use of distance metrics as a basis for evaluating similarity.

Despite its appeal as a conceptually simple way to extract descriptions that shares

functionality with other components of the Gauntlet System, a nearest-neighbor approach based on

distance metrics inadequately addresses some aspects of the language-representation problem. In

particular, while such an approach is often pro cient at identifying the best candidate from amongfi

a set of potentials, it cannot easily identify all candidates that meet criteria that are not easily

expressed in terms of thresholds. Another problem with a model comprised of stored templates is

that it becomes very difficult to analyze as the number of stored templates increases, because the

constraints and regularities of the domain manifest though opaque distance scores instead of

through explicit features of the model. Ad hoc adjustments to the distance metrics to adapt to

nuances and exceptions in the language-representation domain become nearly impossible as the

model grows, because the possible affects of such adjustments on each functional requirement of

the system need to be considered separately.

Figure 2-11 caricatures the how process of matching a phrase against remembered examples

36

can go wrong when there is sufficient asymmetry among the remembered examples that the input

tree is closer, according to the metric, to the wrong remembered tree by virtue of irrelevant

features. Of course, adjustments to the distance metric can always compensate for the peculiarities

of a particular example, but such adjustments constitute a losing strategy in general.

 [[[T ENTITY�...� MARKET
D PLACE� AT
D PATHELEMENT� TO

[[[T ENTITY� ...�TREE
D PLACE� AT
D PATHELEMENT� FROM

to from the
tree

the
marke

t
to 0 1/3 1 1

from 0 1 1
the tree 0 2/3

the
market

0

Figure 2-11: Caricature of the Weakness of Distance Metrics

Intuitively, the example of Figure 2-11 fails because the model does not capture the

essential and seemingly obvious requirement that, in order for a prepositional phrase to represent a

�PATHELEMENT TO, it must have the preposition to. Due to the disparity between the symbols

that comprise the prepositional phrase and those that make up the semantic description, however, it

would be an abuse of notation to equate the symbol to with the semantic symbol TO in order to

facilitate comparison.

If the model is to capture the intuition about to �and PATHELEMENT TO, it must

assimilate the information conferred in the difference between a prepositional phrase whose

37

PP

to/TO NP

the/DT market/NN

PP

from/IN NP

the/DT tree/NN

PP

to/TO NP

the/DT tree/NN

distance = 1/3

distance = 1/6

Distance Metric Rule: compute
distance as an average of the
fixed values in the table at left.

description is a PATHELEMENT-TO and a very similar counterexample, such as a

�PATHELEMENT FROM in which the referenced PLACE is identical to that in the example. The

essential feature of the counterexample is that it differ from the example in only one signi cantfi

respect, thus constituting a near miss. The process of learning from near misses, rst articulatedfi

by Patrick Winston as part of the Arch-Learning paradigm[Winston 1970], enables the following

�judgment, in terms of the comparison of a PATHELEMENT TO example with a

�PATHELEMENT FROM near miss: because the prepositional phrase of the example differs from

that of the counterexample only in the preposition, it must be essential that a prepositional phrase

contain to �in order for it to represent a PATHELEMENT TO. The new knowledge that to is

�required in the prepositional phrase of a PATHELEMENT TO then augments the model of

�PATHELEMENT TO.

Learning from near misses becomes more convenient when the near misses themselves are

generated from examples of similar representations. If the representational space is sparse—that

is, if only one semantic description typically suits a particular turn of phrase—then it becomes

possible to use an example of one type of semantic representation as a near miss for models that

would otherwise have matched the example. The procedure update-all-models generates

near misses from examples when appropriate, in order to maximally improve all models by virtue

of the new example. In the following pseudocode, a partially-described fragment is a parsed phrase

that may or may not have a semantic description assigned to each of its subordinate clauses. In a

training example, in which the top-level description of S must be provided by the trainer, any

descriptions assigned to subordinate clauses of the partially-described fragment are guaranteed to

be subcomponents of the top-level description.

Procedure update-all-models:
Inputs: {partially-described fragment S

 semantic description D}
for each model M in memory:

if type-of(M) equals type-of(D):
generalize-model(M,D,S)

else if qualifies-as-near-miss(M,S):
specialize-model(M,S)

else:
do nothing

38

In the pseudocode, specialize-model is a procedure that applies near-miss learning

heuristics to add more strict constraints to a model. The procedure generalize-model

exploits regularity present in multiple descriptions to relax the constraints in a model. Models, in

this context, specify the constraints that govern how sentence fragments map onto semantic

descriptions. Such a language-representation model must have a single semantic representation at

the root level of the parse tree. The type of the model is the same as the type of this root-level

semantic model. Figure 2-12 depicts a schematic of a model of a TRANSITION SPACE, to

illustrate the structural components of a nontrivial model.

Figure 2-12: A Transition-Space model

Of particular importance in Figure 2-12 are the explicit constraint labels added to both the

parse tree and the semantic descriptions. MUST-BE-A labels specify that, in order for a

subordinate semantic description or lexical item in a candidate tree to be consistent with the model,

all threads in the model's bundle must be subsumed by threads in the corresponding part of the

candidate tree. MUST-BE-IN-SET is similar to MUST-BE-A, but it identi es a set of possibilitiesfi

39

transitionSpace

35891, thing transitionSpace

transitionLadder

35892, thing transitionLadder

THIS_THREAD_IS_A_PLACEHOLDER

35894

MUST_BE_A
35893, thing entity MUST_BE_A

S

Thing ID=35893

MUST_BE_A
entity
thing

VP

VBD

MUST_BE_A
VERB
word

MUST_BE_IN_SET
change
action

MUST_BE_IN_SET
appeared
appear
happen
action

MUST_BE_IN_SET
end
action

MUST_BE_IN_SET
appears
appear
action

rather than a single partial thread. By composing MUST-BE-IN-SET with MUST-BE-

SUBCATEGORY, the model of Figure 2-12 captures the constraint that the verb in a sentence must

be either a CHANGE, APPEAR, or END verb in order for the sentence to represent a

TRANSITION SPACE. Section 4 contains the complete ontology of model constraints.

2.5 Refining the Language-Representation Model

The model introduced in Section 2.4 concisely captures meaningful constraints that govern

how language maps onto representation. This model has a subtle problem, however, that arises in

part from the nature of learning by near misses: the model does not easily capture constraints that

hinge upon several simultaneous differences between examples and counterexamples. To motivate

a discussion of how to address this problem, Figures 2-13 – 2-16 illustrate an excerpt of a training

sequence that causes the learning mechanism to build a language-representation model of

TRANSITION SPACES.

Figure 2-13: The Description Becomes the Initial Model

40

transitionSpace

39609, thing transitionSpace

transitionLadder

39610, thing transitionLadder

THIS_THREAD_IS_A_PLACEHOLDER

39612

speed
39611, thing entity abstraction relation magnitude−relation rate speed

S

Thing ID=39611

speed
rate
magnitude−relation
relation
abstraction
entity
thing

VP

VBD

increased
VBD
VERB
word

increased
increase
change−magnitude
change
action

In gure 2-13, the learning mechanism has just received its rst example of afi fi

TRANSITION SPACE. The parse tree of “The speed increased” has already had its noun phrase

replaced with a THING, via a bottom-up match and replace procedure. Also, note that below the

verb-phrase node there are two nodes instead of one compound word/tag node as in previous

gures. The compound notation was a simpli ed notation; actual parse trees have an extra nodefi fi

that speci es the type of word in each leaf (the preterminal node). The thread contained by thefi

preterminal node in Figure 2-13 means that the leaf is a past-tense verb, which is a verb, which is a

word.

The rst action of the learning mechanism is to link all semantic components in thefi

description provided along with the parse tree to either partial descriptions found at subordinate

parse-tree nodes, such as the THING description that has been attached to the noun phrase, or

�threads from lexical nodes, such as the thread CHANGE CHANGE-

�MAGNITUDE INCREASE, to their corresponding elements in the supplied description for the

sentence as a whole. The PLACEHOLDER thread stores the association between the verb thread

and the corresponding derivative in the semantic description.

Figure 2-14: Generalize Model via “The bird mutates”

41

transitionSpace

35738, thing transitionSpace

transitionLadder

35739, thing transitionLadder

THIS_THREAD_IS_A_PLACEHOLDER

35741

MUST_BE_A
35740, thing entity MUST_BE_A

S

Thing ID=35740

MUST_BE_A
entity
thing

VP

VBD

MUST_BE_A
VERB
word

MUST_BE_A
change
action

By giving the learning mechanism just one more example, the model is made much more

general. Although near misses must differ in only one important respect in order to change the

model, examples may have several differences, because all are assumed to act independently to

generalize a portion of the model. In the example of Figure 2-14, the parse tree of “The bird

mutates,” along with the associated semantic description, causes three changes in the model. First,

the type of word permitted in the verb phrase is generalized from a past-tense verb to any kind of

verb. Second, the THING described by the noun phrase may now be any type of ENTITY, because

the thread of bird diverges from that of speed in the rst symbol after ENTITY. Finally, the verb isfi

generalized to any type of CHANGE verb, for reasons analogous to the those governing the other

two generalizations. The mechanism of the constraints on the THING and the transition verb is to

add a MUST-BE-A symbol to the end of the thread of the relevant THING type. The mechanism

of the constraint on the verb class is to add a MUST-BE-A constraint to the thread of parse-tree

node itself.

Figure 2-15: Generalizing by Expanding a Set

When the learner receives the partially-described parse tree of “A dog vanished” along with

42

transitionSpace

37017, thing transitionSpace

transitionLadder

37018, thing transitionLadder

THIS_THREAD_IS_A_PLACEHOLDER

37020

MUST_BE_A
37019, thing entity MUST_BE_A

S

Thing ID=37019

MUST_BE_A
entity
thing

VP

VBD

MUST_BE_A
VERB
word

MUST_BE_IN_SET
change
action

MUST_BE_IN_SET
vanished
vanish
disappear
action

the associated TRANSITION-SPACE description, it cannot reconcile this example with the model

because of the MUST-BE-A constraint added in the last step. The only option available that

generalizes the model is to expand the set of possibilities. The constraint added in the step

depicted in Figure 2-15 loosens the requirement on the verb: the verb may now be any CHANGE

verb or exactly the verb vanished.

Figure 2-16: Generalizing Died and Vanished to Disappear

In the nal step of Figure 2-16, the TRANSITION sentence is “a bird died.” The threadfi

has the symbol DISAPPEAR in common with the verb vanish, so the MUST-BE-SUBCATEGORY

constraint is applied to the model.

Consider what happens when the model developed in Figures 2-13 – 2-16 is tasked with

assigning a semantic description to “A bird soared.” As noted in Section 2.3.2, a TRANSITION-

SPACE interpretation of this sentence is dubious at best, and probably should not be admitted.

WordNet, however, contains many interpretations of soar, as listed in thread form in Figure 2-17.

Among the interpretations is a CHANGE action.

43

transitionSpace

37017, thing transitionSpace

transitionLadder

37018, thing transitionLadder

THIS_THREAD_IS_A_PLACEHOLDER

37020

MUST_BE_A

37019, thing entity MUST_BE_A

S

Thing ID=37019

MUST_BE_A
entity
thing

VP

VBD

MUST_BE_A
VERB
word

MUST_BE_IN_SET
change
action

MUST_BE_IN_SET
disappear
action

TRAVEL�RISE�SOAR
TOUCH�HANDLE�MANIPULATE�OPERATE�FLY� HANG�GLIDE�SOAR
TRAVEL�FLY�SOAR
CHANGE�CHANGE�MAGNITUDE�INCREASE� GROW�RISE�SOAR
TOUCH�HANDLE�MANIPULATE�OPERATE�GLIDE�SAILPLANE� SOAR

Figure 2-17: Thread Representations of the Senses of Soar in WordNet[Miller, G. 2006]

Because the training step shown in Figure 2-14 generalized the model such that it will admit any

THING permitted by the senses of bird, nothing prevents the model from admitting the

TRANSITION-SPACE interpretation of “A bird soared” that means literally that a feathered flying

animal increased. We condone such absurdity because, presumably, the TRAJECTORY-SPACE

model would admit the conventional interpretation of “A bird soared,” and so it might seem

reasonable to delegate the task of deciding which interpretation is best to Gauntlet's experts. This

is not reasonable, however, because retaining all of the descriptions admitted by each model as

Lance processes the parse tree from the bottom up would lead to combinatorial explosion. The

unfortunate fact is that some interpretations of subordinate clauses must become pruned before the

top-level models are even applied.

How should Lance evaluate which intermediate interpretations to prune? One path to

answering this question is to modify the language-representation modeling framework so that the

TRANSITION-SPACE model of Figure 2-16 can capture the constraint that, roughly stated, if the

THING is a physical object then the transition verb has to be of a class that includes words such as

change, mutate, and vanish, but not words such as increase and decrease that apply to abstractions

like distance, volume, or value but not to physical objects. Not only would such a constraint be

cumbersome to teach because of its subtlety, it would require models and learning methods that

are sensitive to high-order interactions between different aspects of descriptions. Winston appealed

to the scienti c method to justify a learning method that largely hinges on the descriptive ability offi

rst order constraints: “In science as a whole, each particular method for treating interacting effectsfi

is usually a major problem in itself and over-ambitions search for completely general methods is of

low utility when premature.”[Winston 1970 – p. 150] General methods for extracting high-order

constraints would not only be difficult to devise in the learning method but would likely be

computationally infeasible as well.

Presently, I do not have a way to handle constraints that the system cannot learn because

44

they depend on too many variables simultaneously. I have employed a heuristic strategy for the

time being and I suggest alternatives to this compromise in Section 5.

To compensate for constraints that Lance is yet unable to learn, I have brought the very

distance metrics that performed so poorly at classifying the representational space back into

service; this time to indicate a measure of familiarity. To see how this works, suppose that the

counterexample given in Figure 2-18, which is actually an example of a TRAJECTORY SPACE,

were stored in a list of example descriptions associated with the TRAJECTORY-SPACE model.

Now, when Lance is presented with “A bird soared,” both the TRAJECTORY- and TRANSITION-

SPACE models admit several matches, each containing threads associated with the various senses

of bird and soar.

Figure 2-18: A Trajectory Example (Implicit Transition Counterexample)

45

trajectorySpace

44831, thing trajectorySpace

trajectoryLadder

44832, thing trajectoryLadder

THIS_THREAD_IS_A_PLACEHOLDER

44835

dog
44833, thing entity physical−entity object whole living−thing organism animal chordate vertebrate mammal placental carnivore canine dog

path
44834, thing path

S

Thing ID=44833

dog
canine
carnivore
placental
mammal
vertebrate
chordate
animal
organism
living−thing
whole
object
physical−entity
entity
thing

VP

VBD

ran
VBD
VERB
word

ran
run
travel−rapidly
travel
action

Because the the distance between the TRAJECTORY-SPACE interpretation of “A bird

soared” that describes an animal in an aerial trajectory is so close—speaking in terms of the

distance metric—to the TRAJECTORY-SPACE interpretation of “A bird flew,” this interpretation

would be ranked highest among all potential matches. The TRANSITION-SPACE interpretation

that means literally “a feathered animal increased,” on the other hand, would be quite dissimilar to

previously encountered TRANSITION SPACE examples by virtue of the disparity between

� � �ENTITY PHYSICAL-OBJECT ... BIRD and the subjects of other TRANSITION SPACES

that entail increase/decrease verbs, which would presumably be ABSTRACTIONs rather than

PHYSICAL-OBJECTs. As a result, the similarity score for the absurd TRANSITION-SPACE

interpretation of “A bird soared” would be low. The process of nding the best description orfi

descriptions at each stage of recognition can take on a beam-search quality: the rst-orderfi

constraints of the language-representation models admit many possibilities, a few of which are

chosen based on their preferred heuristic similarity scores.

The nal topic not yet addressed is context. More often than not, interpretation of afi

sentence or phrase is governed not only by memories of past experiences but by the situation at

hand. If the Gauntlet System is ever to form complex, multimodal concepts, it will surely need a

way to combine cues from vision and perhaps from other recent linguistic events to influence the

interpretation of sentences and fragments. The nature of how context influences understanding is

fertile ground for research, and a complete solution is far beyond the scope of this thesis.

Failure to address context, nevertheless, would severely limit the utility of Lance as research

into Gauntlet's concept-formation domain continues. In order not to cripple such endeavors as

nding out how the visual apparatus contributes to language understanding, or discovering how tofi

represent information conveyed across several sentences, Lance must provide a feedback channel

that is as flexible as possible given the ill-de ned parameters of the problem.fi

A simple, expedient approach to address context is to allow external components, such as

Gauntlet's yet unrealized Cross-Representational Memory (refer to Figure 1-4), to place

descriptions in a temporary buffer. When this buffer is not empty, Lance will preferentially assign

the descriptions that it contains rather than those seen previously as training examples. By using

46

this apparatus, an expert that anticipates that anticipates that an impinging phrase in the language

stream will have to do with a certain PATHELEMENT, for example, may force Lance to choose

that PATHELEMENT even if other interpretations of a phrase are possible.

47

3. Implementation

In this section I describe the implementation of Lance, a program that learns how to extract

semantic descriptions from language by analyzing example pairs of phrases and descriptions. The

three principles of Flexibility/Coverage, Correctness, ,and Transparency, distilled from the

examples and analysis of Section 2, guide this implementation:

� Flexibility/Coverage: The representational frameworks introduced in Section 2 exemplify

the type upon which the Gauntlet System will depend, but they are not comprehensive.

Other representational frameworks will take hold as the system progresses. This means

that Lance's learning mechanism must be flexible enough to acquire the mappings between

language and these new representations in order to provide the best possible coverage of the

representational space. In Section 2 I point out some situations in which more than one

representation makes sense for a given example. Lance must be able to produce a

description cast in at least one of the admissible representations so long as the model for

extracting that description abides by the stipulation for the guarantee of correctness. Of

secondary importance, it would be desirable to produce as many varieties as possible, as

long as doing so would not compromise coverage of other representational domains, or the

correctness or transparency of the system.

� Correctness: As long as a language-representation mapping can be understood in terms of

rst-order constraints, then there must be at least one nite training sequence such thatfi fi

Lance will be able to produce descriptions according to the mapping after processing that

sequence. The rst-order requirement arises per the discussion of Section 2.4. If afi

mapping depends on higher-order constraints then a best effort should be made to

approximate it via heuristics but no strong guarantee can be made as to correctness.

� Transparency: The models generated by Lance should be understandable by a human

interpreter. This is because the purpose of acquiring models by extrapolating from

examples is to automate a design process that is mostly tedious and error-prone, but that

48

occasionally reveals subtle and interesting constraints that may lead to speculation about

how language inspires representation or vice versa. While I harbor no pretense that my

implementation can discover such subtlety more adeptly than its human trainer, I do not

dismiss the value of a transparent internal representation as a tool to teach oneself, through

the process of teaching Lance, about language and representation. Philosophical issues

aside, transparent representations are extremely helpful in debugging training sequences

because, without them, the only recourse when things go wrong is to trace manually

through the program's execution—a process which would be signi cantly more painful andfi

tedious than designing pattern-matching routines by hand.

Lance's design is guided by these three principles. In this section I present the following

features of Lance's implementation:

� A preprocessing stage that draws lexical information from WordNet and modify the results

of the Stanford Parser.

� A learning procedure that is based on Winston's Arch-Learning paradigm[Winston 1970]

� A recognition procedure that uses rst-order models augmented by distance scoresfi

� A priming mechanism that affords external components control over Lance's recognition

process

� A graphical interactive training environment.

3.1 Overview

Lance is a Java program comprising 68 public classes and interfaces. I present in this

section only the features of Lance that are especially interesting or essential to learning to model

the correspondences between sentences and fragments.

Lance's external interface and many of the interfaces shared by its internal components

conform to the Wire design pattern[Winston 2003, 2]. This pattern comprises abstractions above

the interface mechanics of the Java programming language in which Lance and Gauntlet are

49

written. Instead of the usual pattern whereby classes of components expose methods to other

components, components that follow the Wire pattern expose ports, which can be likened to the

terminals of an electrical component. The wire pattern simpli es the process of integratingfi

components—the ports of the components to be integrated can simply be connected by wires,

without regard to any details of each component's function.

Figure 3-1 is a block diagram of Lance depicting the external interfaces and the interfaces

between components. There is a single port for training the system and for recognizing new inputs;

the behavior depends on the type of input received. A port controls the priming mechanisms that

allows external components to influence Lance's preference for certain representations. A single

port delivers recognized descriptions from Lance to Gauntlet's expert components, although a

demultiplexor may be connected to this port to send descriptions to different destinations

depending on the type of the description. Finally, a privileged interface connects directly to

Lance's learning module, allowing the interactive training component to access Lance's learning

mechanisms.

Figure 3-1: Block Diagram of Lance

50

Dispatch
Word

Identification

Lexical

Memory

Training

Recognition

Model

Memory

Filter

“is-a”

Training/Recognition

Input

Semantic

Descriptions

3.2 Preprocessing Stage

An input on the main input port may indicate that one of three types of events has occurred:

receipt of a training pair, receipt of a sentence to recognize, or receipt of a description to render as

a sentence or fragment. These three event types are uniquely distinguishable by the types of

information supplied. To provide the greatest flexibility, the inputs are accepted in a variety of

forms.

A character string received on the main input port is assumed to be a sentence or fragment,

and so it must be parsed. An instance of the Stanford Parser, which is discussed in Section 4,

performs this parsing. The Stanford Parser used in Lance has a modi ed interface so that it canfi

accept pre-tagged words, which may be speci ed by adding /TAG after the word without anyfi

whitespace, where TAG is one of the Penn Treebank tags[Marcinkiewicz et al. 1993]. Pre-tagging

one or two words in a phrase is often all that is required to force the Stanford parser to treat the

entire phrase differently than it would if it were allowed to derive the tags on its own. This is

especially useful when training Lance on sentence fragments, because a Stanford Parser trained on

the Wall Street Journal corpus[Marcinkiewicz et al. 1993] tends to be better at parsing sentences

than fragments. Once parsed, the sentence is treated in the same way that incoming Stanford parse

trees are treated.

If the input is a Stanford parse tree, it is converted to a different form that I call a flexible

tree. Flexible trees differ from the Stanford trees in four important ways: the nodes can have

constraint labels such as MUST-BE-A, bundles of Thread Memories can augment any node label,

any node can have a set of descriptions assigned to it, and an interface for rearranging a tree (e.g.

moving prepositional-phrase attachments) is provided.

Any input that is an instance of the Thing type or a subcategory of this meta-

representation type is treated as a description with no further processing.

If the input is a Java HashMap, it must contain exactly one of the strings stanford-

tree, flexible-tree, or sentence-fragment as a key, along with the appropriate

value, and at least one Thing instance in the slot of some other key. HashMap inputs may have

51

any number of Thing instances; in fact, they must have as many as apply to the included

fragment, or else the assumption of a sparse representational space may lead Lance to generate

erroneous counterexamples. HashMap inputs may also carry along arbitrary baggage, such as

images, audio, etc. These objects are stored in a vector that accompanies each training example, so

that when a model admits a match, any objects that accompanied the closest example to that match

are packaged with that match before it is emitted to the experts.

The penultimate preprocessing activity that Lance performs before sending the repackaged

input along to the recognition or learning stage is looking up the bundles of threads corresponding

to each word and each preterminal node in the flexible tree. The threads of preterminal nodes are

hard-wired, because they can be of a very limited range of possibilities. First, a lexical memory

component is searched. If the lexical memory does not contain an entry for the word in question

Then the search proceeds to WordNet[Fellbaum 1998], accessed via the Java WordNet Interface

[Finlayson 2007]. The two-step search allows the modi cations to the senses in WordNet if theyfi

are unsatisfactory. There may be several approaches to constructing threads from WordNet; my

approach is essentially to walk along hypernym chains and collect the representative symbol from

each synset visited, while maintaining a visited-synset list to avoid getting stuck in loops, and

adhering to some additional precautionary measures to curtail excessive branching.

A nal stage of preprocessing generates all prepositional-phrase attachment permutationsfi

according to a set of attachment rules, when operating in recognition mode. This is a naïve

approach to dealing with prepositional phrases, because in the general case a simple generate-and-

test is computationally infeasible. If the number of prepositional phrases per sentence is assumed

to be small, the added computational burden is small. The prepositional-phrase attachment

permutations are stored in a queue and tried by the matcher until one of the attachments produces a

description of the top-level node of the tree. The permutations are generated according to a small

group of transformations that govern to which noun phrases and verb phrases a given prepositional

phrase may attach without affecting the word order in the sentence or fragment that was originally

parsed. Figure 3-2 is a view from a prepositional-phrase reattachment tool that is part of Lance's

graphical training-set editor. A prepositional phrase is highlighted in gray, and its possible points of

52

attachment according to the rules are highlighted in red.

Figure 3-2: Lance's Graphical Prepositional-Phrase Attachment Editor

3.3 Model Building

 If a language input is accompanied by a semantic description, it constitutes a training

example. Section 2.4 illustrates acquisition of a TRANSITION-SPACE model through a training

sequence. This section presents a detailed overview of the procedures and representations that

interact to facilitate this modeling.

In order to successfully acquire the constraints embodied in a training pair, Lance must

already have learned the constraints governing the constituents of the sentence or fragment of the

new training pair. To learn about trajectories, for example, Lance must have acquired the

constraints that govern descriptions of objects and path elements, so that learning about trajectories

53

is reduced to learning a few simple constraints, which in the case of trajectories are the kinds of

objects can participate, the limitations on the motion verb, and the optional inclusion of several

PATHELEMENTS. Lance's learning procedure and recognition procedure are intertwined:

recognition closely follows the structure of the constituency tree, and assigns descriptions to

subordinate clauses before learning can acquire the description of the highest-order node of the

parse tree. The recognition process is self-referential as well, because descriptions cannot be

assigned to clauses until subordinate clauses have descriptions that match the patterns in the

recognition rules for these subordinate clauses.

The interdependence of learning and matching grounds out when both the sentence

fragment and the representation provided to Lance have no internal structure. Many noun phrases

lack phrasal structure below the root node, and so noun phrases may serve as such a base case.

The rst action performed upon receiving a new training pair after subordinate matchingfi

has completed is to resolve the references between the threads attached to the leaves of the parse

tree, which represent words, and the threads present in the semantic description. If the system were

given the phrase “a dog,” as a rst training example, along with a THING description including thefi

thread:

entity physical-entity object whole living-thing organism ... canine dog[Miller, G. 2006],

then it must determine that the thread in the word's bundle refers to the thread in the semantic

bundle. If the description has no internal structure beyond its group of threads then this reference

resolution is straightforward. The references are preserved explicitly in the just-instantiated model

of the correspondences between noun phrases and semantic descriptions, though, because the

learning process will eventually modify the threads, making equality comparisons inadequate to

accurately determine reference. Once the reference between the dog thread in the word's bundle

and that in the semantic description has been established, the system attempts to discard any lexical

information that is irrelevant to the description so that it does not interfere with learning. The word

dog has at least seven distinct senses in WordNet[Miller, G. 2006], and we would not want the

system to make inferences about the similarity and difference between the unintended senses of

dog and those of other nouns, and use such inferences to constrain the model.

54

After the dog example is processed, the system has one model, depicted in Figure 3-3, that

consists merely of a parse-tree fragment, a description, and a set of references between threads.

This model is a seed, and requires generalization before it may be used in matching. Now suppose

that the system encountered the phrase “a man,” paired with the appropriate semantic description.

This example is determined to be of the same type embodied by the model, because its semantic

description's only thread is similar enough to the the model's only thread, and because the two

parse trees can be completely aligned. Generalization takes place, and the model, shown in Figure

3-4 (a), is now capable of matching any phrase that has the word a followed by a noun that has a

sense as a type of organism. In Figure 3-4(c), the training example “the rock” causes further

generalization, and subsequently the model would match any determiner followed by a noun that

has a sense as a whole object.

When the system receives “the price,” the thread is sufficiently different from the extant

model of physical things that a new model is generated. I have, somewhat arbitrarily, imposed the

constraint for things that the rst three symbols of the item's prime thread must match in order tofi

qualify a model match. The higher the number of symbols that must match, the more models will

be generated to accommodate the taxonomy of THINGS. Having slightly more models than

necessary may affect the ability of the system to perform efficiently but it does not seriously limit

its capabilities. Instantiating far too many models by way of an overly strict similarity threshold

would make the training tedious—if what constraints have been learned about dog noun phrases

must be re-learned for cat noun phrases, there would be little bene t in using this system.fi

Allowing too few models would make learning impossible. In the extreme case where only one

model were permitted by a similarity threshold that is too relaxed, the model would simply

degenerate to the point where it admitted every turn of phrase under one uniform, but meaningless,

semantic category.

Next, consider the PLACE description of the prepositional phrase “on the table.”

Prepositional phrases subsume noun phrases, for which the system must have already acquired

models if the training is to be successful. The rst stage of learning “on the table” is to recognizefi

the subordinate noun phrase “the table.”

55

As was the case with dog, WordNet has many senses of table. Clearly, though, if the trainer

has provided a semantic description including a THING description of table that indicates a piece

of furniture, that is the only description that must be considered in matching. The approach taken

by Lance when learning from new training examples is to invoke its own priming mechanism,

which is a lter that causes Lance to prefer descriptions found within a set of providedfi

descriptions, during any stage of recognition. The set of provided descriptions is derived from the

training example by decomposing its description into all of that description's component parts.

Recognition of “the table” is a three-step process: rst, all models are presented with thefi

parse-tree fragment, and a subset of models will respond with a positive match. Then, each of

these matching models produces a new description by aligning the new parse tree with the model's

parse tree, and replacing all elements of a copy of the model's semantic description with the

corresponding elements of the new parse tree, as determined by the alignment of the parse trees

and the references that were stored when the model was instantiated. Finally, the outputs of all

matching models are ltered, in this case by the priming mechanism, and only those descriptionsfi

that pass through the lter are retained. In the case of “the table,” only the THING included in thefi

PLACE that was given as a training example is retained.

After all subordinate clauses have been assigned, the training of the new semantic category

�PLACE ON may begin. Because this new description and its accompanying fragment match no

previously learned models, a new model is instantiated. The thread of the preposition, on, matches

no threads in the semantic description so no association is formed. The subordinate THING

description, however, which is present in the parse-tree fragment because it was attached during the

recognition step, is equivalent to the subordinate THING in the PLACE description, so a reference

is formed between the two.

Subsequent training with the the PLACE “on the bird” will cause the model to become

generalized. There is an implicit requirement that the teacher provide information that is relevant

�and informative. “On the bird” is a particularly good choice for teaching PLACE ON after the

rst example, “on the table,” because it conveys the information that the THING represented by thefi

subordinate clause doesn't have to be inanimate. The learner applies a method analogous to the

56

climb-tree heuristic of Winston's Arch-Learning methods[Winston 1970] by generalizing the

threads for table and bird to a new model thread that embodies the constraint that, in order for a

�prepositional phrase to be a PLACE ON, its subordinate THING must be a whole object. Both

training examples contain the word on, and this is assumed to be relevant: a MUST-BE constraint is

placed in the word bundle to assure that only prepositions containing the word on are admitted as

�PLACE ONs. It should be noted that these constraints are not nal—in the hypothetical scenariofi

in which the trainer wanted the system to learn that “atop the table” meant the same thing as “on

�the table,” presentation of a new training example of “atop the table” paired with a PLACE ON

would cause the system to apply the climb-tree heuristic to the word thread, generalizing it from

the speci c word fi on to any preposition. Counterexamples could then do the job of eliminating

undesired prepositions.

The process of providing counterexamples that prevent sentences and fragments from being

recognized as members of the wrong semantic categories would be prohibitively tedious were it

not the case that training examples of one category automatically serve as counterexamples of

categories that would otherwise have matched the parse fragment of the training example on the

basis of its structure and partial description. This ability to cross reference examples with

counterexamples is unique to sparse representational spaces. The goal of the representations of the

Gauntlet System is coverage, so overlap among representational spaces is not forbidden. Based on

qualitative observations of TRANSITION- and TRAJECTORY-SPACES, PLACES,

PATHELEMENTS, and linguistic forms that represent thread memories, though, it seems plausible

that the assumption of a sparse representational space will serve well in most instances.

Discovering which models treat an example of a different category as an counterexample is

easy, but uninformative. The counterexample must also be a near miss in the Arch-Learning sense;

one which is similar enough to an example that it conveys information about a new constraint.

How similar is similar enough? A noun phrase would under no circumstances be considered a

potential match for a PLACE, because of the structural mismatch between the parse trees of the

items in question. This suggests that the rst rule for evaluating whether an example is a near-missfi

should be that the parse trees must be structurally consistent. The precise de nition of structuralfi

57

consistency in this context is that, evaluating from the root of each parse tree onward, every

corresponding pair of nodes either has a semantic description attached to both nodes or has the

same number of children, except in the case that a child's semantic description references an

element of a sequence in the meta-representation notation of the top-level semantic description

of the model, in which case any number of such children are permitted. For the purposes of clear

discussion, I will consider only cases in which the branching factors of the example and the model

are the same3.

Structural consistency alone is not enough to merit consideration as a near miss. If the

system had acquired a new model from the PLACE description of “on the table,” and was then

given “to the floor” as a PATHELEMENT, and hence a potential near-miss for the PLACE model,

it would be unwise to treat it as a near miss. The reason is that, because it differs from the PLACE

model in both the type of THING it subsumes and the preposition used, there is not enough

information to conclude that one or the other of these differences is what distinguishes the

PATHELEMENT from the PLACE. If, on the other hand, the model had already been generalized

to accept any THING represented by the noun phrase, it would be safe to conclude that the

different preposition is the important feature. The second rule for evaluating whether an example

may be used as a near miss, therefore, is that it be different from the model in only one signi cantfi

way.

A third rule that the system uses to decide whether to treat an example as a near miss is that

the example must not already be rejected by the model in question. In general, the constraints

created by near-miss learning add negative quali cations, e.g. MUST-NOT-BE-A. If a category isfi

already rejected by a model, adding such negative constraints is redundant.

The fourth and nal rule for admitting near misses arises as a precaution to guard againstfi

over-constraining the models. If the trainer provides multiple descriptions to accompany a

sentence that fall into the categories of different models, it may very well be the case that these

should serve as complimentary near misses; that is, this compound training example might be

3 In section 3.6 I discuss an implementation detail pertaining to sequences. In the present implementation of

Lance, all training examples pertaining to forms that may have a variable number of elements must have exactly

one of the type of element that may be multiplied, and the semantic form corresponding to such an element must

be a member of a sequence. For the purpose of clarity in the present discussion, I omit this detail.

58

treated just as would a sequence of training examples, each containing the sentence and one of the

descriptions. This is not the behavior I chose, though, because if there is no difference between the

word senses used in the compound description (and occasionally even if there are differences) then

the same partially-described sentence may end up being presented as an example and as a

counterexample to a single model. This behavior would violate the felicity conditions upon which

the Arch-Learning paradigm rests, and so it cannot be permitted.

Once a near miss has been identi ed according to these rules, the pair thread bundlesfi

associated with the two nodes containing the critical difference are passed to a procedure

specialize. In a similar fashion, when examples of a category are presented, all nodes are

aligned and the pairs of bundles are each presented to the procedure generalize. The

procedures generalize and specialize are outlined below.

Procedure generalize:
Inputs: Bundle model, Bundle example

if all constraints in model are satisfied by example:
return, making no modifications

else if the model is unconstrained:
[Use a combinatorial optimization technique to map all of
the threads in model to a thread in the example, such that
the total edit distance between bundles is minimized. climb
tree on each of the pairs in this map, and convert the
result of each tree climbing to a MUST_BE_A or
MUST_HAVE_FEATURE]

else:
build a Map, m, of the violated constraints and

the threads in example that violate them, if
applicable.

for each model thread, mt, and example thread, et, in m:
get the constraint, c, that modifies mt.
if c is MUST_BE_A or MUST_HAVE_FEATURE:

[climb tree heuristic if possible, otherwise
expand set. if it makes no sense to expand the
set just drop the constraint all together (this
not exactly like drop-link, because we never
know if there is an exhaustive set)]

else if c is MUST_NOT_BE_A or MUST_NOT_HAVE_FEATURE:
remove mt from model

else if c is MUST_HAVE_FEATURE_IN_SET or
 MUST_BE_IN_SET :

[expand set, either by adding another constraint
thread or by generalizing (via climb-tree) an
extant constraint thread.]

59

else:
error: unknown constraint.

end for
end if

end procedure

Procedure specialize:
Inputs: Bundle model, Bundle counter

if counterexample is already rejected by the model:
return, performing no specialization.

else if the model is yet unconstrained:
[possibilities:
1: The counterexample contains one additional thread that
the model lacks. Reduce the model to a MUST_BE on all
threads and a MUST_NOT on the lacking one.
2: The counterexample lacks a thread that the model
contains. reduce the model to a must-be on all threads
3: the counterexample has one thread that is somehow
different from a thread in the model. find the fork point
on the disparity, add a must-be on one symbol up on the
model side, and add a must-be for all other threads in the
model. Alternatively, if the fork point occurs at the end
of the model's thread, add a MUST_NOT constraint one symbol
up on the counterexample side.]
4: otherwise, the counterexample is not a near miss

else:
Obtain a list, l, of threads that are not explicitly
sanctioned by constraints in the model.
if l has more than one element:

return, because the counterexample is not a near miss
else if the l has exactly one element:

add to the model a MUST_NOT_BE or
MUST_NOT_HAVE_FEATURE

thread for the element of l
else:

Obtain a list l2, of threads that are not identical to
some positive-constraint thread in the model, minus
the constraint label itself.
if l2 has more than one element:

return, because the counterexample is not a near
miss

else if l2 has exactly one element:
add to the model a MUST_NOT_BE or
MUST_NOT_HAVE_FEATURE thread for the element of
l2

else:
[here, the counterexample is exactly the same as
the model. depending on whether a fail-soft or
fail-fast behavior is desired, we may choose to
label the model as destroyed (for fail-fast) or
do nothing (for fail-soft)]

end if
end if

60

end if
end procedure

In the pseudocode of generalize and specialize, I have referred to six explicit

constraints: MUST_BE_A, MUST_NOT_BE_A, MUST_BE_IN_SET, MUST_HAVE_FEATURE,

MUST_NOT_HAVE_FEATURE, and MUST_HAVE_FEATURE_IN_SET. The feature

constraints are identical to their counterparts in all respects except that feature constraints apply to

threads whose rst symbol is FEATURE. Such threads are used to augment description bundlesfi

without incurring ambiguity as to the dominant type of the bundle. MUST_NOT constraints

indicate that a certain thread (or any subcategory thereof) may not be present in a bundle in order

for the constraints to be satis ed. Positive constraints indicate the contrary; that a certain thread orfi

subcategory must be present. The SET constraints indicate that a bundle must have at least one of

the threads, or a subcategory thereof, in order to qualify. The set of FEATUREs is considered

independently from the set of other types.

The procedures for learning and recognition in the base case are easily generalized to apply

�to compound phrases and descriptions. As mentioned in the context of learning PLACE ON, the

rst generalization is that the process of reference resolution that occurs when the model isfi

instantiated honors equivalence of entire substructures cast in the meta-representation rather than

just bundles of threads. During matching, these entire substructures are replaced by the

corresponding substructures in the partially-described tree rather than just their bundles. When

generalizing and specializing, the same procedures outlined above in the context of bundle

generalization and specialization are applied only to the top-level bundle of the stored description.

This is a compromise that I had to make in order to facilitate debugging a complicated system;

using only the root-level bundle in model-building procedures precludes, for example, developing a

model with the constraint: the path element described by the prepositional phrase that modifies the

verb phrase must have a geological formation as the reference object. While it is conceivable that

a certain representation may require distinctions on such a ne granularity, my system is currentlyfi

incapable of judgments on this level of speci city. My implementation is perfectly capable,fi

however, of capturing constraints such as: the path element described by the prepositional phrase

61

that modifies the verb phrase must have the path function FROM, because the path function is

speci ed in the top-level bundle of a PATHELEMENT.fi

3.4 Approximating High-Order Constraints.

As discussed in Section 2, the Arch-Learning approach to learning from examples and near

misses is best suited to learning rst-order constraints. When constraints span many variables in afi

model, I augment the rst-order model by approximate methods.fi

The mode of this augmentation is to use distance-like4 scoring methods to measure

similarity between a description generated by a rst-order model and the examples that were usedfi

to train that rst-order model. All descriptions emitted by such an augmented model have afi

distance score that intimates how plausible that description might be, based on prior experience.

My method for computing a distance-like score between two descriptions cast in the meta-

representation is cast in terms of combinatorial optimization and is largely empirical. The basic

procedure is outlined as follows:

Procedure find-distance:
Inputs: Description D0, Description D1

if optimize(thread-dist, D0.bundle, D1.bundle) equals 0:
if D0, D1 both have subcomponents:

return optimize(find-distance,
 D0.subcomponents
 D1.subcomponents)

else:
return 0

end if
else if D0, D1 are both Sequences:

if optimize(find-distance,
D0.subcomponents
D1.subcomponents) < SEQUENCE-THRESHOLD :
return optimize(thread-dist,D0.bundle,D1.bundle)

end if
else if D0, D1 are both Relations:

if find-distance(D0.subject,D1.subject)
< DERIVATIVE-THRESHOLD
AND

4 My scoring methods do not conform to the subadditivity constraint required of true distance metrics.

62

 find-distance(D0.object,D1.object)
< RELATION-THRESHOLD:

 return optimize(thread-dist,D0.bundle,D1.bundle)
end if

else if D0, D1 are both Derivatives:
if find-distance(D0.subject,D1.subject)

< DERIVATIVE-THRESHOLD :
return optimize(thread-dist,D0.bundle,D1.bundle)

end if
else if D0,D1 are both plain Things:

return optimize(thread-dist,D0.bundle,D1.bundle)
end if
return MAX-DISTANCE

end procedure find-distance

In the pseudocode, the procedure optimize is a combinatorial-optimization algorithm that takes

two sets of objects to compare and a cost function, and returns the average cost of the optimal

assignment. The procedure thread-dist returns MAX-DISTANCE multiplied by the ratio of

the number overlapping symbols in both threads (counting from general to speci c) to the sum offi

the lengths of the two threads.

4.5 Priming Mechanisms

By sending collections of descriptions to Lance's priming port, external components may

influence the behavior of Lance as it recognizes sentences. If Lance's recognition mechanism

contains a set of descriptions (the “primed” state) then it will preferentially assign descriptions

from that set to phrases when it can. This can prevent unlikely interpretations of subordinate

clauses from being pruned by Lance's recognition process—which has no other knowledge of

context—if they are regarded more plausible by expert components that have access to the cross-

representational domain. This ability to influence the recognition process based on partial or

anticipated knowledge will be a much-needed feature in the Gauntlet System as research in

concept-formation progresses.

In addition to permitting interpretations that are unlikely based on training experience

alone, priming mechanisms may prove necessary to derive even those descriptions that the system

has encountered before, if the representational space is not sparse as I have assumed, or if rst-fi

63

order constraints are not as well represented in future future additions to Gauntlet's repertoire of

representational frameworks as they are in the examples that I have chosen.

If the representational space is not sparse, or if rst-order constraints are not strong enoughfi

to eliminate the majority of irrelevant semantic descriptions of a phrase, then each model that

admits a surface form is likely to be active at a recognition step that concerns that surface form,

regardless of how many such models are present. The process of recognition from the bottom up

would, in this scenario, have an amplifying rather than the desired attenuating effect on the number

of descriptions assigned to each successive subsuming phrase. This ampli cation, coupled withfi

the word-sense ambiguity problem inherent in natural language, would certainly lead to

unacceptable computational performance on sentences of modest length.5 In such a scenario, it is

infeasible to produce all valid results, and unlikely, due to the approximate nature of the lteringfi

that occurs at each recognition stage, that the intended meaning of the sentence would make its

way to the nal stage of recognition. Priming could provide a way to keep the search headed in thefi

right direction in situations when excessive branching might occur.

3.6 Example Training Exercise

This section consists of annotated screen captures from Lance's interactive training

environment that depict a complete training sequence in which Lance acquires models for

TRAJECTORY-SPACES, TRANSITION-SPACES and their subcomponents.

Figure 3-3 is a view from Lance's graphical training-sequence editor. The panel on the left

contains semantic descriptions paired with images, The panel at the right may display an editor in

which descriptions may be paired with parse trees, or it may display a condensed view of the entire

training sequence. Any semantic description may be augmented by an optional image or text.

5 Assuming that the parse tree is of uniform depth, and that every recognition stage yields a constant number,

greater than one, of descriptions for every permutation of inputs, the performance would be of roughly

exponential complexity in the length of the sentence.

64

Figure 3-3: Lance Training-sequence editor, showing single training example

Figure 3-4: Lance Training-sequence editor, showing entire training sequence

65

After training on all of the examples in a training sequence consisting of noun phrases,

Lance acquires the models shown in Figure 3-5. Figure 3-5 (a) is a model of physical entities

represented by noun phrases, whereas Figures 3-5(b) and (c) are both models of abstractions. The

mapping between the syntax and semantics in 3-5 (a) and 3-5 (b) is the same; it is redundant,

therefore, to acquire separate models for each of these mappings. It would not be appropriate to

lower the similarity threshold such that these models would be joined, however, because, as noted

in this Section, such generality would lead to ambiguity in models of more complex mappings.

 (a) (b)

(c)

Figure 3-5: Models of Noun Phrases

After acquiring models of THINGS or the type represented by noun phrases, and related

expressions such as compositions of noun phrases and prepositional phrases that represent parts of

objects, e.g. “the top of the tree,” the system is in a position to learn about PLACES, of the sort

often represented by prepositional phrases such as “on the fence,” or “near the top of the tree.”

There are 10 places currently in the ontology: NEXT-TO, FAR-FROM, NEAR, LEFT-OF, RIGHT-

OF, ON, UNDER, ABOVE, IN, and AT. Shown in Figure 3-6 is one example of a PLACE model.

Figure 3-6: Model of phrases meaning UNDER

As noted in Section 2, the Stanford Parser handles certain PLACE syntax differently

66

NP

D T

MUST_BE_A
DT
word

NN

MUST_BE_A
physical−entity
entity
thing

MUST_BE_A
NN
NOUN
word

NP

D T

MUST_BE_A
the
DT
word

NN

MUST_BE_A
NN
NOUN
word

MUST_BE_A
abstraction
entity
thing

NP

D T

MUST_BE_A
the
DT
word

NN

MUST_BE_A
abstraction
entity
thing

MUST_BE_A
NN
NOUN
word

NN

MUST_BE_A
abstraction
entity
thing

MUST_BE_A
NN
NOUN
word

depending on whether it is part of a larger context or parsed alone. For example “next to the table”

produces an adverbial phrase when parsed alone, and a prepositional phrase with a preceding

particle when parsed as part of a verb phrase. To address this problem, I have simply transformed

all of the output of the Stanford Parser to eliminate the ambiguity. The implementation searches

the Stanford Parser's output for the particle, prepositional-phrase constructions and replaces any

instances with the adverbial-phrase form.

The system may now acquire models of PATHELEMENTS. There are vefi

PATHELEMENTS presently in the ontology: TO, FROM, TOWARD, AWAY-FROM and VIA.

Most PATHELEMENTS have an implicit PLACE, so it is unnecessary to have acquired models of

explicit PLACE prepositions in order to acquire models of PATHELEMENTS. Figures 3-7 and 3-8

�show two models of surface forms corresponding to PATHELEMENT TOWARD semantic

descriptions. Figure 3-7 shows the typical form, containing the word toward. In Figure 3-8, the

�PATHELEMENT TOWARD is implicit in the word down.

�Figure 3-7: Model of explicit PATHELEMENT TOWARD phrases

67

toward

32189, thing pathElement toward

at

32188, thing place at

MUST_BE_IN_SET
32187, thing entity physical−entity object whole MUST_BE_IN_SET, thing part MUST_BE_IN_SET

PP

IN

MUST_BE_A
toward
IN
word Thing ID=32187

MUST_BE_IN_SET
whole
object
physical−entity
entity
thing

MUST_BE_IN_SET
part
thing

�Figure 3-8: Model of implicit PATHELEMENT TOWARD using the word down

In Figure 3-8, note that the model permits two interpretations of down, both as an adverb

and as a preposition. This results from peculiarities of the training data: the Stanford Parser parses

the phrase “down the hill” as an adverbial phrase, whereas it parses “down the side of the

mountain” as a prepositional phrase. Despite this structural ambiguity, Lance has distilled the

essential information from the training examples: if a phrase contains the word down followed by a

phrase that represents a physical object or the side of such an object, then the compound phrase

� �represents a PATHELEMENT TOWARD in which the destination is a PART BOTTOM of the

entity represented by the subsumed phrase.

It is relatively straightforward to acquire TRAJECTORY- and TRANSITION-SPACES. In

its present con guration, Lance requires surface forms that may contain a variable number offi

elements to be presented in a simpli ed form—TRAJECTORY-SPACES, for example, which mayfi

have zero or more PATHELEMENTS, must be trained with exactly one modifying pathelement.

This limitation applies to training only; once it has acquired TRAJECTORY-SPACE forms, Lance

may recognize forms with any number of modifying PATHELEMENTS.6 Figure 3-9 depicts the

6 This behavior results from a rule that I have hard-wired into the system: if a training parse tree has one branch

whose description corresponds to an element of a sequence, then during recognition any number of branches are

permitted in the sequence, provided that they all match the pattern of the single branch of the example. I believe

that modifying this behavior to permit flexibility in training as well as in recognition would not present any difficult

problems but may compromise the clarity of the training procedures.

68

toward

45974, thing pathElement toward

at

45973, thing place at

bottom

45972, thing part bottom

MUST_BE_IN_SET
45971, thing entity physical−entity object MUST_BE_IN_SET, thing part side MUST_BE_IN_SET

ADVP

RB

MUST_BE_IN_SET
down
RB
word

MUST_BE_IN_SET
down
IN
word

Thing ID=45971

MUST_BE_IN_SET
object
physical−entity
entity
thing

MUST_BE_IN_SET
side
part
thing

model of TRAJECTORY-SPACES and Figure 3-10 depicts the model of TRANSITION-SPACES.

Figure 3-9: Model of a typical TRAJECTORY-SPACE form

69

trajectorySpace

76534, thing trajectorySpace

trajectoryLadder

76535, thing trajectoryLadder

THIS_THREAD_IS_A_PLACEHOLDER

76541

MUST_BE_A

76536, thing entity physical−entity object whole MUST_BE_A

path

76537, thing path

MUST_BE_A

76540, thing pathElement MUST_BE_A

at

76539, thing place at

tree

76538, thing entity physical−entity object whole living−thing organism plant vascular−plant woody−plant tree

NP

Thing ID=76536

MUST_BE_A
whole
object
physical−entity
entity
thing

VP

VBG

MUST_BE_A
VERB
word

MUST_BE_A
travel
action

Der. ID=76540

MUST_BE_A
pathElement
thing

Figure 3-10: Model of a TRANSITION-SPACE form

Note that, in Figure 3-9, the top-level label of the phrasal structure corresponding to the

TRAJECTORY-SPACE model is that of a noun phrase, rather than that of a sentence. This is an

artifact of the training data; the rst example of a TRAJECTORY-SPACE was “the dog running tofi

the tree,” in which the gerund form of the verb forces a noun-phrase parse of the construction.

Subsequent examples, containing past- or present-tense verbs rather than gerunds, generalized the

verb form to any word that is of the subsuming class VERB. Because Lance ignores the Stanford

Parser's phrase tags, however, no generalization caused the NP tag in the model to change when

Lance processed the example in which the top-level phrasal label was S.

Having learned about TRAJECTORY- and TRANSITION-SPACES, Lance is in a position

to learn about CAUSE. As noted in Section 2, typical sentences expressing causal relationships

contain the word because in conjunction with an SBAR clause that obscures the verb-phrase of the

TRAJECTORY, TRANSITION, or other construction that precedes it. I simply circumvent this

difficulty by transforming SBAR constructions according to a rule that moves the two logical parts

of such expressions into positions such that they are easily recognized by Lance. Figures 3-11 and

70

transitionSpace

153412, thing transitionSpace

transitionLadder

153413, thing transitionLadder

THIS_THREAD_IS_A_PLACEHOLDER

153415

MUST_BE_A
153414, thing entity MUST_BE_A

S

Thing ID=153414

MUST_BE_A
entity
thing

VP

VBD

MUST_BE_IN_SET
change
action

MUST_BE_A
VERB
word

MUST_BE_IN_SET
appeared
appear
happen
action

MUST_BE_IN_SET
end
action

MUST_BE_IN_SET
disappear
action

MUST_BE_IN_SET
appears
appear
action

3-12 depict two CAUSE models, for different syntax structures.

Figure 3-11: A CAUSE model

Figure 3-12: Another CAUSE model

Note the overgeneralized word that the word that joins the two parts of the CAUSE model

in Figure 3-11. This model resulted from two training examples: “the dog running caused the bird

flying to the tree” and “the value decreasing causes the price decreasing.” Because of the

difference in verb tense between caused and causes, the climb-tree heuristic forced the model to

include the intersection of these two threads. Because these are WORD threads—which pertain to

part of speech rather than semantic information—the point of intersection is of the general

category VERB. Such overgeneralized threads are occasionally unavoidable. In this case, because

71

cause

296375, thing cause

MUST_BE_IN_SET

296367, thing transitionSpace MUST_BE_IN_SET, thing trajectorySpace MUST_BE_IN_SET

transitionLadder

296368, thing transitionLadder

finishing

296370

race
296369, thing entity abstraction psychological−feature event social−event contest race

MUST_BE_IN_SET

296371, thing transitionSpace MUST_BE_IN_SET, thing trajectorySpace MUST_BE_IN_SET

transitionLadder

296372, thing transitionLadder

decreasing

296374

speed
296373, thing entity abstraction relation magnitude−relation rate speed

S

Seq. ID=296367

MUST_BE_IN_SET
transitionSpace
thing

MUST_BE_IN_SET
trajectorySpace
thing

VP

VBZ

MUST_BE_A
VERB
word

Seq. ID=296371

MUST_BE_IN_SET
transitionSpace
thing

MUST_BE_IN_SET
trajectorySpace
thing

cause

286675, thing cause

MUST_BE_IN_SET

286659, thing trajectorySpace MUST_BE_IN_SET, thing transitionSpace MUST_BE_IN_SET

trajectoryLadder

286660, thing trajectoryLadder

f lew

286666

bird

286661, thing entity physical−entity object whole living−thing organism animal chordate vertebrate bird

path

286662, thing path

t o

286665, thing pathElement to

a t

286664, thing place at

MUST_BE_IN_SET

286667, thing trajectorySpace MUST_BE_IN_SET, thing transitionSpace MUST_BE_IN_SET

trajectoryLadder

286668, thing trajectoryLadder

ran

286674

dog

286669, thing entity physical−entity object whole living−thing organism animal chordate vertebrate mammal placental carnivore canine dog

path

286670, thing path

t o

286673, thing pathElement to

a t

286672, thing place at

SBAR_TRANSFORMED

Seq. ID=286667

MUST_BE_IN_SET
trajectorySpace
thing

MUST_BE_IN_SET
transitionSpace
thing

IN

MUST_BE_A
because
IN
word

Seq. ID=286659

MUST_BE_IN_SET
trajectorySpace
thing

MUST_BE_IN_SET
transitionSpace
thing

the system has no knowledge of which semantic sense of the word cause pertains to the model, it

has only the WORD threads to manipulate. If this became a problem, the CAUSE model could be

modi ed to take a lexical thread into the bundle of the root fi relation, rather than using a symbol

that is not related to a lexical item. For the purpose of this example training exercise I leave it as

is, because it serves to showcase the specialization routine in the example of IS-A models.

There are several situations in which we would present Gauntlet with sentences of the form

“A ___ is a ___,” in which the blanks may be occupied by simple noun phrases such as “a dog” or

compound phrases such as “a man hiking.” We may wish to teach the system about a new type of

dog called a bulldog, in which case we would want the system to recognize “A bulldog is a dog” as

a cue that triggers formation of a Thread Memory. In another scenario, we might teach Gauntlet

what the trajectory verb hike means by issuing the declarative statement, “A man hiking is a man

walking up the side of a mountain.” These two scenarios call for a general form of description

called IS-A, depicted as a model in Figure 3-13.

Figure 3-13: Model of IS-A relationships

Some of the sentences admitted by the model of Figure 3-13 would also be admitted by the

CAUSE model of Figure 3-12. As noted, this results from the overgeneralized WORD thread in the

CAUSE model. The specialization feature of Lance aims to compensate for such overgeneralized

threads by generating near-miss counterexamples from examples of another category. In order for a

72

isA

386921, thing isA

MUST_BE_IN_SET
386919, thing entity MUST_BE_IN_SET, thing trajectorySpace MUST_BE_IN_SET, thing transitionSpace MUST_BE_IN_SET

MUST_BE_IN_SET
386920, thing entity MUST_BE_IN_SET, thing trajectorySpace MUST_BE_IN_SET, thing transitionSpace MUST_BE_IN_SET

S

Thing ID=386919

MUST_BE_IN_SET
entity
thing

MUST_BE_IN_SET
trajectorySpace
thing

MUST_BE_IN_SET
transitionSpace
thing

VP

VBZ

MUST_BE_A
is
VBZ
VERB
word

Thing ID=386920

MUST_BE_IN_SET
entity
thing

MUST_BE_IN_SET
trajectorySpace
thing

MUST_BE_IN_SET
transitionSpace
thing

training pair of one category A to be a near miss for another category B, it must:

� admit examples that B ordinarily admits

� consist almost entirely of nodes that satisfy B's constraints exactly, that is, by virtue of

thread equality not simply by thread overlap.

� contain exactly one node that satis es fi B's constraints by virtue of overlap, not equality. This

node is the near-miss node.

In the example of Figures 3-12 and 3-13, the near-miss node is the verb that connects the two

elements of the CAUSE or IS-A description. During the same training step that generalized the

model of Figure 3-13, Lance specialized the CAUSE model to include the additional constraint in

Figure 3-14.

Figure 3-14: Specialization in the CAUSE model in response to a near miss

73

cause

296717, thing cause

MUST_BE_IN_SET

296709, thing transitionSpace MUST_BE_IN_SET, thing trajectorySpace MUST_BE_IN_SET

transitionLadder

296710, thing transitionLadder

f in ishing

296712

race
296711, thing entity abstraction psychological−feature event social−event contest race

MUST_BE_IN_SET

296713, thing transitionSpace MUST_BE_IN_SET, thing trajectorySpace MUST_BE_IN_SET

transitionLadder

296714, thing transitionLadder

decreasing

296716

speed
296715, thing entity abstraction relation magnitude−relation rate speed

S

Seq. ID=296709

MUST_BE_IN_SET
transitionSpace
thing

MUST_BE_IN_SET
trajectorySpace
thing

VP

VBZ

MUST_BE_A
VERB
word

MUST_NOT_BE_A
is
VBZ
VERB
word

Seq. ID=296713

MUST_BE_IN_SET
transitionSpace
thing

MUST_BE_IN_SET
trajectorySpace
thing

4. Background

This section is a survey of natural-language science and technology as it applies to the

design of Lance. Section 4.1 pertains to parsing theory and practice, with emphasis on the

particular technology upon which Lance is built. Section 4.2 is devoted to a small selection of

representational frameworks that exemplify the types of descriptions that Lance is equipped to

learn to extract from language. A thorough treatment of either of these topics would overwhelm

the subject matter of this thesis. The purpose of this section, therefore, is to introduce just those

features of each topic that factor prominently into the design of Lance.

4.1 Parsing Theory and Technology

In order to model the ways in which the structure of language gives rise to semantic

descriptions, it is essential to have methods to extract the underlying structure from the surface

form of language. Parsing is the process of extracting this structure. To motivate a brief discussion

of the challenges that parsing poses and the technology that has been applied to meet these

challenges, consider the example of a sentence and its associated parse trees in Figure 4.1.

Figure 4.1 Parse Structures of “The man saw a bird with a telescope”

Figure 4.1 (a) is a phrase-structure description of the sentence. Phrase structure identi es thefi

grammatical constituency of a sentence according to the rules of a Context-Free Grammar (CFG).

74

S

NP

The/DT man/NN

VP

saw/VBD NP

a/DT bird/NN

PP

with/IN NP

a/DT telescope/NN

saw

man bird with

the a telescope

a

nsubj

det det pobj

det

dobj
prep

(a) Constituency / Phrase-Structure Parse Tree (b) Dependency Parse Tree

The hierarchies that CFGs sanction specify which phrases are subsumed by which other phrases,

as governed by recursively applicable rules that ground ultimately in part-of-speech (POS)

categories. Figure 4.1 (b) depicts a dependency parse tree, in which the structure is governed by a

notion of word-based attraction and selection. The links in dependency parse point toward the

modi ers of words. These modi ers, such as the word “the”fi fi in the example, are called the

dependents, and the words they modify are the heads.

The difficulty in parsing arises from real or apparent ambiguity in language. In the

example of Figure 4.1, it is clear that the sentence describes an event where a man used a telescope

to view a bird. Such clairvoyance comes only by virtue of that birds do not usually have

telescopes, however, and that telescopes may be used to view objects. This type of commonsense

knowledge that we often take for granted, along with other non-linguistic judgments that contribute

to parsing, seem to make correct parsing of a sentence an AI-complete problem.

4.1.1 Statistical vs. Principle-Based Parsing

My implementation depends on an existing parser to create phrase-structure parse trees

from sentences and fragments. Because accurate parsing is still very much an open problem,

practicality factored most heavily into the decision to use a parser based on a Probabilistic Context-

Free Grammar (PCFG), rather than several more elegant solutions currently under development.

PCFG-based parsers are statistically trained on large corpora of hand-parsed sentences.

This training allows the parsers to acquire an underlying grammar that governs the productions

used to generate the parse trees in the training corpora. To summarize the functionality of PCFG-

based parsers very tersely, the goal of a PCFG is to maximize the conditional probability of a

produced parse tree, given the observed frequencies of the productions in the training corpus. A

PCFG may incorporate statistical information pertaining to lexical features in the corpus in order to

improve performance, but any apparent understanding of the constraints of the lexicon is illusory.

The preferred alternative to statistical parsing is a principle-based approach that is informed by

linguistic principles rather than by statistical data extracted from a large corpus. Niyogi [2005]

75

provided a critique of the present trend to apply traditional machine-learning techniques to

problems of computational linguistics.

Of the principle-based parsers currently available, none has coverage comparable to its

statistical counterparts. An expedient solution, therefore, is to rely on a statistical parser until a

better alternative becomes available. The Stanford Parser is a feature-rich statistical parser that

supports phrase-structure and dependency parsing, and often produces correct ne structure evenfi

in light of frequent errors in the overall parse structure, especially pertaining to difficult problems

such as prepositional-phrase attachment. Correctness on a small scale is important for my

implementation to function properly. In Sections 2 and 3 I introduce some ways to address the

problem of erroneous parses by way of prepositional-phrase rearrangement.

4.2 Semantic Representations

The stated purpose of Lance is to extract descriptions—that is, instances of representational

frameworks—from sentences and phrases. In this section I characterize the representational

frameworks. Because the Gauntlet System aims, in part, to explore the space of representational

frameworks in order to achieve the best coverage, it would be infeasible to describe completely the

frameworks that Lance must operate on. One way to address this inherently underspeci ed domainfi

is to impose a structure on the frameworks to achieve a kind of meta-representation that constrains

the structure of the representations themselves. This is the approach taken in the design of Lance.

The mechanics of the chosen meta-representation are presented in Section 2. Presented here are

three representations that the meta-representation must accommodate, because the virtues of each

suggest that each will be an indispensable member of the Gauntlet System's repertoire. The

frameworks described are Jackendoff's Lexical Conceptual Structures (LCS), Borchardt's

Transition Spaces, and Vaina's and Greenblatt's Thread Memory. The choice to focus on these

three representations to motivate the design is based on their known wide descriptive coverage:

Mark Seifter has demonstrated that in a corpus of roughly 50,000 sentences from the Wall Street

Journal, roughly one description cast in a subset of LCS is found per every four sentences

76

processed.[Seifter 2007] The descriptions here are by no means comprehensive, but they motivate

the considerations involved in specifying Lance's design parameters by highlighting the aspects of

each framework that make it powerful.

4.2.1 Lexical Conceptual Structures

Developed by Ray Jackendoff[Jackendoff 1983], LCS is a framework that embodies the

philosophy that languages are shrunk-wrapped around the ways in which observable phenomena

project in the mind. This notion that language naturally conveys the types of information that the

human mind is predisposed to perceive allows LCS to bene t from cognitive psychology, whereasfi

traditional semantics is con ned to the realm of classical logic. That Jackendoff devoted specialfi

attention to the ways in which visual processing accounts for linguistic forms makes LCS an

especially strong framework for the Gauntlet System, which is focused on the confluence of

language and vision. The following example illustrates how the meaning of the sentence “The

squirrel climbed the flagpole” is represented by LCS:

[Event GO �[Thing SQUIRREL] , [Path UP [Thing FLAGPOLE]] �]
The example demonstrates two strengths of LCS. The rst is that the description evokes afi

trajectory, that is, motion of an object along a path. In the example, the path, the moving object,

and its motion all refer to physical attributes, but this need not be the case in general. There is

strong psychological evidence that humans are adept at reasoning in terms of spacial

metaphors[Jackendoff 1983]. The other strength illustrated by the example is that LCS captures

the semantics of motion using a conveniently small set of primitives: the meaning of climbed is

cast in terms of GO and UP7. By comparison, the traditional Logical Form representation requires

a separate semantics for each motion verb[Jackendoff 1983]. Schank's Conceptual Dependency

Theory[Schank 1984] contains many primitives, such as MOVE (in the sense of moving a body

part), INGEST, ATRANS (meaning abstract transfer), PTRANS (meaning physical transfer),

PROPEL, EXPEL, and GRASP, which can all be reduced to compositions of LCS primitives, even

7 The UP primitive is used here and in [Jackendoff 1983] for clarity; it may be decomposed further into primitives

that literally mean “toward the top of.”

77

if some of the speci city of Schank's primitives might be lost in the translation. The compromisefi

of speci city in favor of concision in LCS will be worthwhile when designing the Gauntletfi

System's vision components, because the complexity of extracting descriptions from the visual

stream excludes any representations with motion semantics that cannot be decomposed into

sequences of easily-recognizable actions.

All descriptions in LCS comprise nested frames. At the highest hierarchical level are

EVENTs and STATEs. EVENTs typically describe the relations expressed by action verbs such as

climb, force, and allow, whereas STATEs typically describe relations expressed by verbs that

enumerate an object's position, orientation, or state of being, such as point, and be. At the next

level are PATHS, which express logical routes along which either orientation or action may

happen. PATHS are composed of PLACES, which identify a position relative to a reference object.

The simplest items of LCS are THINGS, which identify objects. The following is an abbreviated

list of the productions sanctioned by LCS[Jackendoff 1983]:

[EVENT]�{
[Event GO� [Thingx] , [Pathy] �]
[Event STAY �[Thingx] ,[Placey]�]

[Event CAUSE�[{Thing
Event }

x] ,[Event y]�]
[Event LET �[{Thing

Event }x] , [Event y]�]
...

Here, GO accounts for action-verb constructions, STAY accounts for constructions such as

“The books remained on the shelf,” CAUSE for those such as “John made us laugh” and LET for

those such as “Mary allowed John to leave.”

[STATE]�{[State BE � [Thingx] , [Placey] �]
[State ORIENT � [Thingx] , [Pathy] �]
[State GOExt �[Thingx] , [Path y] �]

BE accounts for “The book was on the table.” ORIENT refers to pointing objects, for

example “the sign pointed toward the center of town.” GOExt refers speci cally to trajectory-likefi

78

constructions in which the verb describes extent, instead of motion: “The road went from Boston to

New York.”

[PATH]�[{TO
FROM
TOWARD
AWAY-FROM
VIA

}�{[Thing x]
[Placex]}�]

Paths are classi ed as fi bounded paths, directions, or routes. Bounded paths include those

for which the source, goal, or both is speci ed, such as in the phrase “to the house.” The referencefi

object in directions serves only to orient the path, and does not lie on the path directly, as in the

phrase “toward the house.” Routes contain the speci ed reference object, but that object is not thefi

source or goal of the path, such as in “via the house.”

[PLACE]� [Place PLACE_FUNCTION �[Thing x]�]

[PLACE]� [Place ON �[Path x]�]

[THING]� [Thing x]

The PLACE-FUNCTIONs used in the Gauntlet System thus far are BEHIND, ON,

ABOVE, UNDER, AT, NEAR, LEFTOF, RIGHTOF, and IN.

4.2.2 Transition Space

In his work on Causal Reconstruction[Borchardt 1993], Gary Borchardt observed that

changes in objects and attributes, rather than the objects or attributes themselves, are the key to

discovering the causal relations that answer how-and-why questions about events. To see why state

transitions are so important, consider the following sequence of events: The hammer began to

move toward the glass, then the hammer made contact with the glass. The glass was broken.

In the context of the example, the objects are the hammer and the glass. The attributes are

79

variables such as the state of the glass (broken or unbroken), the motion of the hammer, the

distance between the hammer and the glass, and the contact of the hammer with the glass. When

faced with the question of why the glass broke, though, it is difficult to answer succinctly in terms

of these attributes alone. The glass did not break simply because the hammer moved toward it,

because had the hammer never touched the glass during the course of its motion, there would have

been no collision. The glass did not break solely because contact occurred either, because had the

hammer simply come to rest on the glass there might have been no damage. The deduction that

answers the question is, roughly stated, that because the hammer's motion existed at the time

contact occurred, the resulting impact caused the glass to break. In order to make explicit the

constraints that enable such deductions, Borchardt introduced the Transition Space representation

of events.

Transition Space is best visualized with a table in which each row corresponds to a relation

between particular objects and attributes, and each column represents a particular time interval.

Each cell of the table may have one of ten values: APPEAR, DISAPPEAR, CHANGE,

INCREASE, DECREASE, and the corresponding opposites, NOT_APPEAR, NOT-DISAPPEAR,

etc. Figure 4.2 is a simple Transition-Space description of the example.

Figure 4.2: A simpli ed Transition-Space rendering of an event.fi

In order to frame a useful description in terms of Transition Space, there must be a way to

ascertain the relevant state changes and temporal relationships. The notion of relevance in this

context would seem circuitous were it not for that Borchardt required all input to his system to

adhere to Grice's maxims of quantity, quality, relation and manner[Borchardt 1993]. In effect, the

80

A
D
�
+_

A
D
�
+_

Key
APPEAR
DISAPPEAR
CHANGE
INCREASE
DECREASE

NOT-APPEAR
NOT-DISAPPEAR
NOT-CHANGE
NOT-INCREASE
NOT-DECREASE

distance(glass,hammer)
speed-of(hammer)
heading-of(hammer)
state-is(glass,broken)

t0 t1 t2 t3

�
A
A
A A A

_ D
D D
D D

requirement ensured that all state changes that were present were relevant, and that no relevant state

change was absent from the description. Enforcing such a requirement does compromise the

flexibility of Borchardt's system, but arguably it does not detract from the utility of Transition

Space as a representation.

Although the process of determining relevance becomes much more complicated when

Grice's maxims take the form of suggestions rather than guarantees, it may be that we learn to

identify relevant features by experience, or that we take cues about relevance from our sub-

symbolic reasoning abilities. In the context of the Gauntlet System, this would mean that either the

expert-speci c memory, the cross-representational memory, or both would need to participate infi

the process of determining relevance. Until these aspects of the Gauntlet System's design are

explored further, it is acceptable to fall back on Grice's maxims as a way to evaluate the clarity of

language input to the Gauntlet System.

4.2.3 Thread Memory

As described by Lucia Vaina and Richard Greenblatt[Vaina, Greenblatt 1993], the Thread

Memory representation organizes class hierarchies in a convenient and flexible way. Lance

bene ts from Thread Memories not only to capture categorical information expressed in sentences,fi

but also to facilitate internal processes that enable Lance to learn to recognize representational

frameworks.

A thread is a loop-free chain linking semantic nodes, accessible via a key. Once a thread

memory forms, its key evokes the memory, by linking to the rst element of the thread. Anfi

encounter with a particular mallard duck, for example, generates the following:

mallard � � � � �living-thing animal bird duck mallard

The key, mallard, though not an element of the thread, triggers the arrangement of semantic nodes

ending in the mallard category. The links point from general nodes toward more speci c nodes,fi

starting with the rst node following the thread's key.fi

Traditionally, categorical information is represented by a tree. Trees capture categorical

81

information efficiently in simple cases, and thus may seem superior at rst glance to threads, whichfi

may appear unnecessarily redundant. Barring closer consideration, threads seem wasteful—why,

after all, should an encounter with a new mallard duck not be described by precisely the same

memory as that for the mallard in the example, if the new bird looks, walks, and quacks the same

way?

The power of Thread Memories rests in their flexibility and robustness. As the following

points explain, the bene ts outweigh the costs of using threads instead of trees. The actual costfi

incurred by thread representations as opposed to trees in complex systems is minimal.

� Retrieval of classes from threads occurs in an order conducive to robust performance in the

presence of errors: even if the key a for a different type of duck were mistakenly associated

with the thread for mallard, retrieval of semantic nodes would continue to provide useful

information until the last node of the thread. Trees constrain information retrieval to

proceed from speci c to general categories, and thus do not have this advantage.fi

� Anomalies are handled efficiently in Thread Memories, whereas they are cumbersome to

represent with trees. In adding a very peculiar duck to the memory that exhibits properties

of both plants and animals, for instance, the Thread Memory representation does not have

to evaluate the effects of adding the plant category on other memories of ducks. Any such

modi cation of a tree would affect all subordinate categories.fi

� Threads easily permit objects to participate in more than one classi cation hierarchy atfi

once. In a certain context, a dog is a canine, which is a mammal, which is an animal, etc.

In a different context, however, the same memory of a dog should evoke the notion of a pet,

and its associated classi cation hierarchy. Thread Memory makes this type of flexibilityfi

simple to achieve, by linking multiple threads to a single key.

That threads possess this added flexibility and robustness as compared to trees

distinguishes them as a superior representation for the Gauntlet System, in which efficiency is not

of highest priority. The redundancy of Thread Memory does not preclude their use in efficient

systems, though, in particular because short, bushy trees offer little space savings over separate

82

threads for each leaf.

In the meta-framework employed to implement representations in Lance, threads may

augment the ontology of any representation. For example, LCS has the basic symbol GO rather

that a complicated description of motion. Suppose a certain expert in the Gauntlet System were

adept at detecting whether a person in a visual scene was running or walking—then it might seem

reasonable to expand Jackendoff's LCS to include these new categories of motion. As noted in

Section 4.2.1, however, the simplicity of LCS greatly bene ts the Gauntlet System, and addingfi

more basic motion types such as RUN would have complications, because the changes in the

ontology would propagate their effects throughout the system. Thread Memory neatly addresses

�the problem, however, by allowing the GO primitive to expand into threads such as GO WALK

�and GO RUN. In this way, no generality is lost and designers of Gauntlet's experts may decide on

a per-expert basis whether to depend on the augmented ontology.

83

5. Discussion

The methods that I implemented for learning how to model correspondences between

language and semantic descriptions have some important limitations. Some of these limitations

suggest straightforward improvements to the design, while others pose exciting challenges that

motivate future inquiry.

Efficiency presents a problem for Lance. I am not aware that there is any aspect of my

approach that is inherently costly from a computational perspective, but there are several aspects of

my implementation in which I favored simplicity rather than computational efficiency. In

particular, Lance incurs combinatorial explosion when processing training examples that have

many lexical bundles that each bear one thread found in a complex semantic form. An example of

this phenomenon is compound noun phrases. Consider an example that is plausible in the Wall

Street Journal corpus, “the stock volume analysis.” WordNet contains at least 16 distinct threads

pertaining to stock, at least six pertaining to analysis and at least ve pertaining to fi volume[Miller,

G. 2006]. Lance must therefore try up to 480 combinations of threads, even though most of the

combinations are not sensible. Several AI techniques apply to this problem; most notably

constraint propagation. In the noun-phrase example, it would be unlikely that the interpretation of

stock as meaning honor and volume as quantity even merits consideration. Constraint propagation

is an apt choice for addressing this problem because it permits elimination of unlikely or

impossible combinations by virtue of constraints that could be shared by pairs of lexical items in

phrases such as “the stock volume analysis.”

Another problem area that might bene t from application of AI techniques isfi

approximation of high-order constraints. In order to approximate high-order constraints via

heuristic methods, my implementation stores a collection of examples along with each rst-orderfi

model. Together, the rst-order model, which is built using the Arch-Learning methodology, alongfi

with the collection of examples, form an augmented model that can be thought of as a two-stage

lter. The rst stage eliminates all descriptions that are not admitted by the rst-order model, andfi fi fi

the second stage ranks descriptions according to their degree of familiarity so that the less likely

84

descriptions can be eliminated. Clearly, as the number of training examples increases, a simple

average-distance computation may become both ineffective and inefficient, because the number of

stored training examples will grow without bound and there may be signi cant variation within afi

single augmented model's domain.

Addressing the limitations of my rudimentary second-stage ltering could be fertile groundfi

for application of machine-learning techniques. I have not tried to bring advanced clustering

techniques or other classi cation machinery to bear on this problem but I believe such an attemptfi

would be informative. A technique that seems especially promising in its capacity to draw out the

underlying classes from often-inscrutable distance scores is the use of Self-Organizing Maps

(SOMs)[Kohonen 2001], which not only provide a way to separate prohibitively high-dimensional

data into categories in an unsupervised manner, but also lend themselves to convenient means of

visualizing the categories in a low-dimensional view. Such visualization opportunities align well

with my goal of creating a transparent training interface, that elucidates the constraints so that a

human trainer can revise assumptions about the problem domain. SOMs have the additional

feature that they may limit the number of stored examples, so that the space required for learned

models can have an enforced bound without substantive loss of generality.

As noted, my methods for obtaining a distance-like score from a pair of descriptions are ad-

hoc. Additionally, because it would violate abstractions to include any particulars of the

representational frameworks in the distance calculation, the methods are also woefully ill-suited to

any particular representation. I believe that it would be an interesting challenge to design a scoring

method or other classi cation scheme that evolves along with the model to which it pertains. fi

Undoubtedly there are many schemes, of varying complexity, that could be applied to the

task of ltering the output of the rst-order models. Although trying one or several of suchfi fi

schemes might lead to new insights, the holy grail is a new kind of model that can acquire all of the

constraints of the model explicitly. One approach might be to incorporate information from the

dependency parse into the learning method. As discussed in Section 3, it is difficult to learn

constraints that span disparate parts of the constituency parse tree because the system would be

forced to postulate interdependence among seemingly disconnected variables. General methods for

85

discovering such interdependence are difficult to derive, and likely infeasible.

In a dependency parse, many of the nodes that are separated by several links in constituency

trees are brought closer together. The subject-verb-object relationship, for example is made

explicit. By augmenting the constituency tree with dependency links, it may become possible to

learn many new rules governing semantic interpretation as rst-order constraints, via similarfi

methods to those employed in this implementation. If, for example the subject-verb dependency

link were augmented by one or more if-then constraints, in which the antecedent and consequent

were constrained bundles of the type already learned by my system, it would be possible in

principle to learn constraints such as if the THING represented by noun phrase is a physical object,

then the verb must be a CHANGE verb and not an INCREASE or DECREASE verb in order for the

model to admit a TRANSITION-SPACE description.

Yet another way capture constraints that the current models can only approximate is to

augment the semantic descriptions themselves so that each representation's dependencies on lexical

and structural information can be expressed entirely in terms of rst-order constraints. Thisfi

approach has the advantage that it does not require augmentation of the present constituency-parse

model. For example, TRANSITION-SPACES could subdivide into two categories, PHYSICAL

�and ABSTRACT. The model of TRANSITION-SPACE ABSTRACT would admit only abstract

THINGS as the subject of the transition and would admit any type of transition verb. The model of

�TRANSITION-SPACE PHYSICAL would admit only physical objects, and would place

restrictions on the transition verb such that it cannot mean increase or decrease. Neither of the two

models suffers from the overgeneralized constraints that plague the present model of

TRANSITION-SPACE. Factoring models with high-order constraints into two or more models

that the present implementation can learn would improve coverage.

In addition to the issue of improving the coverage of the constraints, I noted that context-

sensitivity, in the form of some kind of feedback directed from Gauntlet's expert components to

Lance, will be essential for successful concept formation. Currently, Lance has minimal support

for feedback in the form of a priming mechanism that allows anticipated partial descriptions to be

supplied so that the next sentence interpreted, or any of the phrases it comprises, will be assigned

86

these supplied forms preferentially. A simple improvement would allow the external components

to prime descriptions that are anticipated to be similar to upcoming matches, rather than strictly

equivalent. Another improvement involves prepositional-phrase attachments. The present

implementation tries attachment permutations until one happens to have a representation at the

highest level, or until all possibilities are exhausted. The implementation should be improved to

choose the prepositional-phrase attachment scheme that permits one of the primed descriptions to

be assigned. Finally, it may be possible to allow re-tagging and re-parsing of sentence fragments to

accommodate primed descriptions. If the recognition process were be modi ed so that it could befi

executed in the inverse direction, such that parse trees could be generated from partial semantic

descriptions, then primed descriptions could be rendered as sentence fragments and the tags from

these sentence fragments could be applied to the input fragment, which could then be re-parsed.

Such behavior could serve to bootstrap the imagination-stimulating loops sought in the Gauntlet

System, because a remembered semantic description could cause an incoming sentence to be re-

parsed so that it is recognized as having a similar description.

87

6. Contributions

I applied the powerful techniques of the Arch-Learning paradigm[Winston 1970] to the

domain of semantic interpretation of language. Speci cally, I implemented a program, Lance, thatfi

learns how to generate semantic descriptions of sentences and fragments by processing a training

sequence consisting of sentences and fragments paired with their semantic descriptions. The

training sequence must emphasize, through its carefully chosen examples, the important structural

and lexical features of phrases that determine how the phrases project in the semantic domain.

Lance bene ts from the observation that examples of one semantic category often constitutefi

counterexamples of other categories corresponding to similar linguistic forms. Accordingly, Lance

can generate counterexamples from examples in the training set, thus taking full advantage of both

the generalization and specialization modes of the Arch-Learning paradigm.

Lance learns by taking a single description-phrase pair as the initial model of the

correspondence between a particular syntax form and its corresponding semantic description.

Lance then generalizes or specializes this model according to observed regularities and constraints

in its training sequence that pertain to the model. Generalization occurs in response to examples,

and takes the form of shortening Thread Memories [Viana and Greenblatt 1979] pertaining to

lexical or semantic items. Specialization occurs in response to near misses and takes the form of

adding symbols or explicit constraints to the Thread Memories. The explicit constraints employed

by Lance are MUST-BE-A, MUST-NOT-BE-A, MUST-BE-IN-SET, MUST-HAVE-FEATURE,

MUST-NOT-HAVE-FEATURE, and MUST-HAVE-FEATURE-IN-SET. These explicit constraints

decorate the Thread Memories of the initial description in order to transform that description into a

model.

Thus, in this thesis and its supporting work, I have developed an approach to learning how

to translate phrases and sentences to meanings. The Arch-Learning paradigm provides the

foundation for my approach, in which presentation of parse trees paired with instantiated

representations enables learning by examples and near misses. From the perspective of the

numbers, I have:

88

� Implemented Lance, a 12,000 line Java program.

� Demonstrated that Lance can learn models for recognizing THINGS PARTS, PLACES,

PATHELEMENTS, TRAJECTORY-SPACES, TRANSITION-SPACES, CAUSES, and IS-

A relations. From a training sequence comprising 95 examples, Lance has learned 27

models that specify the mapping between phrases and different manifestation of each of

these semantic categories.

89

References

Bonawitz, Keith. 2003. Bidirectional Natural Language Parsing Using Streams and

Counterstreams. M. Eng., Dept. of Electrical Engineering and Computer Science, MIT,

Cambridge, MA.

Borchardt, Gary. 1994. Thinking between the Lines, Artificial Intelligence series. Cambridge MA:

MIT Press.

Fellbaum, Christiane. 1998. WordNet an Electronic Lexical Database. 19 vols. Vol. 17, Language

Speech and Communication series. Cambridge, MA: MIT Press.

Finlayson, Mark. 2007. Java Wordnet Interface. MIT 2007 [cited 2007]. Available from

http://www.mit.edu/~markaf/projects/wordnet/.

Jackendoff, Ray. 1983. Semantics and Cognition. Vol. 8, Current Studies in Linguistics.

Cambridge, Massachusetts: MIT Press.

Kohonen, Teuvo. 2001. Self-Organizing Maps. Third ed. Vol. 30, Springer Series in Information

Science: Springer.

Larson, Stephen. 2003. Intrinsic Representation: Bootstrapping Symbols from Experience. M.

Eng., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA.

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz. 1994. Building a large annotated corpus of

English: the penn treebank. Computational Linguistics 19 (22):313-330.

Marr, David. 1976. Artificial Intelligence -- a personal view. Cambridge, MA: MIT A. I. Lab.

Memo 355.

Miller, Catherine. 2006. Modeling Trust in Human Conversation. M. Eng., Dept. of Electrical

Engineering and Computer Science, MIT, Cambridge, MA.

Miller, George A. 2007. WordNet 3.0 [Website]. Princeton University 2006 [cited 10/1/2007 2007].

Available from http://wordnet.princeton.edu/perl/webwn.

Niyogi, Sourabh. 2005. Steps Toward Deep Lexical Acquisition. Paper read at Workshop on

Psychocomputational Models of Human Language Acquisition, at Ann Arbor, Michigan.

Seifter, Mark. 2007. Building Representations from Natural Language, Dept. of Electrical

90

Engineering and Computer Science, MIT, Cambridge, MA.

Vaina, Lucia and Greenblatt, Richard. 1979. The Use of Thread Memory in Amnesic Aphasia and

Concept Learning. Cambridge, MA: MIT A. I. Lab. Working Paper 195.

Winston, Patrick. 1970. Learning Structural Descriptions from Examples. Ph.D., Electrical

Engineering Dept., MIT, Cambridge, MA.

———. 2007. System Building Using the Wire Paradigm [Website] 2003 [cited 2007]. Available

from http://groups.csail.mit.edu/genesis/wire.html.

———. 2007. Understanding Concepts: An Essential Aspect of Robust Intelligence. Cambridge,

MA.

———. 2007. Biologically Inspired Artificial Intelligence. Cambridge, MA.

Winston, Patrick et al. 2007. Four Powerful Pieces [Website] 2003 [cited 2007]. Available from

http://groups.csail.mit.edu/genesis/frames.html.

91

